Schur rings over free Abelian group of rank two

被引:0
作者
Chen, Gang [1 ,2 ]
He, Jiawei [3 ]
Wu, Zhiman [4 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Minist Educ, Key Lab Nonlinear Anal & Applicat, Wuhan 430079, Peoples R China
[3] Nanchang Hangkong Univ, Sch Math & Informat Sci, Nanchang, Peoples R China
[4] Fengcheng No 9 Middle Sch, Yichun 331100, Peoples R China
关键词
Schur rings; Traditional Schur rings; Wedge products;
D O I
10.1016/j.jalgebra.2024.07.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Schur rings are subrings of the group ring of the group G afforded by a partition of G into finite sets. In this paper, Schur rings over a free abelian group of rank two are classified under the assumption that one of the direct factors is a union of some basic sets. There are eight different types, and all but one type of which are traditional. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:622 / 640
页数:19
相关论文
共 12 条
[1]   On Schur Rings over Infinite Groups [J].
Bastian, Nicholas ;
Brewer, Jaden ;
Humphries, Stephen ;
Misseldine, Andrew ;
Thompson, Cache .
ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (03) :493-511
[2]  
Chen G., 2019, Coherent Configurations
[3]   Schur rings over infinite dihedral group [J].
Chen, Gang ;
He, Jiawei ;
Wu, Zhiman .
COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) :2534-2542
[4]   Schur rings over Z x Z3 [J].
Chen, Gang ;
He, Jiawei .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) :4434-4446
[5]   On Schur rings over cyclic groups [J].
Leung, KH ;
Man, SH .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 106 (1) :251-267
[6]   On Schur rings over cyclic groups .2. [J].
Leung, KH ;
Man, SH .
JOURNAL OF ALGEBRA, 1996, 183 (02) :273-285
[7]   THE STRUCTURE OF SCHUR RINGS OVER CYCLIC GROUPS [J].
LEUNG, KH ;
MA, SL .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1990, 66 (03) :287-302
[8]  
Ponomarenko I., 2015, Lecture Notes
[9]  
Schur I., 1933, Sitzungsber. Preuss. Akad. Wiss. Phy-Math Klasse, V118, P309
[10]  
Voskresenskii V.E., 1967, MATH USSR IZV, V1, P691