Multivariate genomic analysis of 5 million people elucidates the genetic architecture of shared components of the metabolic syndrome

被引:4
作者
Park, Sanghyeon [1 ,2 ]
Kim, Soyeon [3 ,4 ]
Kim, Beomsu [1 ,2 ]
Kim, Dan Say [1 ]
Kim, Jaeyoung [1 ,2 ]
Ahn, Yeeun [1 ,2 ]
Kim, Hyejin [1 ]
Song, Minku [1 ]
Shim, Injeong [1 ]
Jung, Sang-Hyuk [5 ]
Cho, Chamlee [1 ,2 ]
Lim, Soohyun [6 ]
Hong, Sanghoon [1 ]
Jo, Hyeonbin [1 ]
Fahed, Akl C. [7 ,8 ,9 ,10 ,11 ]
Natarajan, Pradeep [7 ,8 ,9 ,10 ,11 ]
Ellinor, Patrick T. [7 ,8 ,9 ,10 ,11 ]
Torkamani, Ali [12 ]
Park, Woong-Yang [1 ,13 ]
Yu, Tae Yang [14 ]
Myung, Woojae [2 ,15 ]
Won, Hong-Hee [1 ,13 ]
机构
[1] Sungkyunkwan Univ, Samsung Med Ctr, Samsung Adv Inst Hlth Sci & Technol SAIHST, Dept Digital Hlth, Seoul, South Korea
[2] Seoul Natl Univ, Dept Neuropsychiat, Bundang Hosp, Seongnam, South Korea
[3] Massachusetts Gen Hosp, Analyt & Translat Genet Unit, Boston, MA USA
[4] Broad Inst MIT & Harvard, Stanley Ctr Psychiat Res, Cambridge, MA USA
[5] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA USA
[6] Sungkyunkwan Univ, Dept Integrat Biotechnol, Suwon, South Korea
[7] Massachusetts Gen Hosp, Dept Med, Div Cardiol, Boston, MA USA
[8] Massachusetts Gen Hosp, Ctr Genom Med, Dept Med, Boston, MA USA
[9] Broad Inst MIT & Harvard, Cardiovasc Dis Initiat, Cambridge, MA USA
[10] Harvard Med Sch, Dept Med, Boston, MA USA
[11] Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA USA
[12] Scripps Res Translat Inst, Scripps Res, La Jolla, CA USA
[13] Sungkyunkwan Univ, Samsung Med Ctr, Samsung Genome Inst, Sch Med, Seoul, South Korea
[14] Wonkwang Univ, Wonkwang Med Ctr, Dept Med, Div Endocrinol & Metab,Sch Med, Iksan, South Korea
[15] Seoul Natl Univ, Coll Med, Dept Neuropsychiat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
MENDELIAN RANDOMIZATION; WIDE ASSOCIATION; HERITABILITY; DATABASE; GWAS; TRANSCRIPTOME; SENSITIVITY; EXPRESSION; DISEASES; INSULIN;
D O I
10.1038/s41588-024-01933-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Metabolic syndrome (MetS) is a complex hereditary condition comprising various metabolic traits as risk factors. Although the genetics of individual MetS components have been investigated actively through large-scale genome-wide association studies, the conjoint genetic architecture has not been fully elucidated. Here, we performed the largest multivariate genome-wide association study of MetS in Europe (n(observed)=4,947,860) by leveraging genetic correlation between MetS components. We identified 1,307 genetic loci associated with MetS that were enriched primarily in brain tissues. Using transcriptomic data, we identified 11 genes associated strongly with MetS. Our phenome-wide association and Mendelian randomization analyses highlighted associations of MetS with diverse diseases beyond cardiometabolic diseases. Polygenic risk score analysis demonstrated better discrimination of MetS and predictive power in European and East Asian populations. Altogether, our findings will guide future studies aimed at elucidating the genetic architecture of MetS. Large-scale multivariate analyses across populations of European ancestry identify risk loci for the metabolic syndrome, improving polygenic prediction models and highlighting associations with diverse traits beyond cardiometabolic diseases.
引用
收藏
页码:2380 / +
页数:19
相关论文
共 84 条
  • [11] A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function
    Cahoy, John D.
    Emery, Ben
    Kaushal, Amit
    Foo, Lynette C.
    Zamanian, Jennifer L.
    Christopherson, Karen S.
    Xing, Yi
    Lubischer, Jane L.
    Krieg, Paul A.
    Krupenko, Sergey A.
    Thompson, Wesley J.
    Barres, Ben A.
    [J]. JOURNAL OF NEUROSCIENCE, 2008, 28 (01) : 264 - 278
  • [12] Second-generation PLINK: rising to the challenge of larger and richer datasets
    Chang, Christopher C.
    Chow, Carson C.
    Tellier, Laurent C. A. M.
    Vattikuti, Shashaank
    Purcell, Shaun M.
    Lee, James J.
    [J]. GIGASCIENCE, 2015, 4
  • [13] PRSice-2: Polygenic Risk Score software for biobank-scale data
    Choi, Shing Wan
    O'Reilly, Paul F.
    [J]. GIGASCIENCE, 2019, 8 (07):
  • [14] De Hert M, 2009, WORLD PSYCHIATRY, V8, P15
  • [15] MAGMA: Generalized Gene-Set Analysis of GWAS Data
    de Leeuw, Christiaan A.
    Mooij, Joris M.
    Heskes, Tom
    Posthuma, Danielle
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (04)
  • [16] Cross-disorder genetic analysis of immune diseases reveals distinct gene associations that converge on common pathways
    Demela, Pietro
    Pirastu, Nicola
    Soskic, Blagoje
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [17] Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity
    Dimas, Antigone S.
    Lagou, Vasiliki
    Barker, Adam
    Knowles, Joshua W.
    Maegi, Reedik
    Hivert, Marie-France
    Benazzo, Andrea
    Rybin, Denis
    Jackson, Anne U.
    Stringham, Heather M.
    Song, Ci
    Fischer-Rosinsky, Antje
    Boesgaard, Trine Wellov
    Grarup, Niels
    Abbasi, Fahim A.
    Assimes, Themistocles L.
    Hao, Ke
    Yang, Xia
    Lecoeur, Cecile
    Barroso, Ines
    Bonnycastle, Lori L.
    Boettcher, Yvonne
    Bumpstead, Suzannah
    Chines, Peter S.
    Erdos, Michael R.
    Graessler, Jurgen
    Kovacs, Peter
    Morken, Mario A.
    Narisu, Narisu
    Payne, Felicity
    Stancakova, Alena
    Swift, Amy J.
    Toenjes, Anke
    Bornstein, Stefan R.
    Cauchi, Stephane
    Froguel, Philippe
    Meyre, David
    Schwarz, Peter E. H.
    Haering, Hans-Ulrich
    Smith, Ulf
    Boehnke, Michael
    Bergman, Richard N.
    Collins, Francis S.
    Mohlke, Karen L.
    Tuomilehto, Jaakko
    Quertemous, Thomas
    Lind, Lars
    Hansen, Torben
    Pedersen, Oluf
    Walker, Mark
    [J]. DIABETES, 2014, 63 (06) : 2158 - 2171
  • [18] An integrated encyclopedia of DNA elements in the human genome
    Dunham, Ian
    Kundaje, Anshul
    Aldred, Shelley F.
    Collins, Patrick J.
    Davis, CarrieA.
    Doyle, Francis
    Epstein, Charles B.
    Frietze, Seth
    Harrow, Jennifer
    Kaul, Rajinder
    Khatun, Jainab
    Lajoie, Bryan R.
    Landt, Stephen G.
    Lee, Bum-Kyu
    Pauli, Florencia
    Rosenbloom, Kate R.
    Sabo, Peter
    Safi, Alexias
    Sanyal, Amartya
    Shoresh, Noam
    Simon, Jeremy M.
    Song, Lingyun
    Trinklein, Nathan D.
    Altshuler, Robert C.
    Birney, Ewan
    Brown, James B.
    Cheng, Chao
    Djebali, Sarah
    Dong, Xianjun
    Dunham, Ian
    Ernst, Jason
    Furey, Terrence S.
    Gerstein, Mark
    Giardine, Belinda
    Greven, Melissa
    Hardison, Ross C.
    Harris, Robert S.
    Herrero, Javier
    Hoffman, Michael M.
    Iyer, Sowmya
    Kellis, Manolis
    Khatun, Jainab
    Kheradpour, Pouya
    Kundaje, Anshul
    Lassmann, Timo
    Li, Qunhua
    Lin, Xinying
    Marinov, Georgi K.
    Merkel, Angelika
    Mortazavi, Ali
    [J]. NATURE, 2012, 489 (7414) : 57 - 74
  • [19] Gene expression analysis identifies global gene dosage sensitivity in cancer
    Fehrmann, Rudolf S. N.
    Karjalainen, Juha M.
    Krajewska, Malgorzata
    Westra, Harm-Jan
    Maloney, David
    Simeonov, Anton
    Pers, Tune H.
    Hirschhorn, Joel N.
    Jansen, Ritsert C.
    Schultes, Erik A.
    van Haagenl, Herman H. H. B. M.
    de Vries, Elisabeth G. E.
    Meerman, Gerard J. te
    Wijmenga, Cisca
    van Vugt, Marcel A. T. M.
    Franke, Lude
    [J]. NATURE GENETICS, 2015, 47 (02) : 115 - 125
  • [20] Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types
    Finucane, Hilary K.
    Reshef, Yakir A.
    Anttila, Verneri
    Slowikowski, Kamil
    Gusev, Alexander
    Byrnes, Andrea
    Gazal, Steven
    Loh, Po-Ru
    Lareau, Caleb
    Shoresh, Noam
    Genovese, Giulio
    Saunders, Arpiar
    Macosko, Evan
    Pollack, Samuela
    Perry, John R. B.
    Buenrostro, Jason D.
    Bernstein, Bradley E.
    Raychaudhuri, Soumya
    McCarroll, Steven
    Neale, Benjamin M.
    Price, Alkes L.
    [J]. NATURE GENETICS, 2018, 50 (04) : 621 - +