Scalable method for the preparation of CoxNi1-x/alumina nanocomposites and their magnetic heating properties

被引:2
作者
Sedminek, Anja [1 ,2 ]
Makovec, Darko [1 ]
Terzan, Janvit [3 ,4 ]
Likozar, Blaz [3 ]
Jenus, Petra [5 ]
Kocjan, Andraz [5 ]
Marolt, Gregor [6 ]
Gyergyek, Saso [1 ]
机构
[1] Jozef Stefan Inst, Dept Mat Synth, Ljubljana, Slovenia
[2] Univ Maribor, Fac Chem & Chem Technol, Maribor, Slovenia
[3] Natl Inst Chem, Dept Catalysis Chem React Engn, Ljubljana, Slovenia
[4] Natl Inst Chem, Lab demonstrat H2 & CO2 Technol, Ljubljana, Slovenia
[5] Jozef Stefan Inst, Dept Nanostruct Mat, Ljubljana, Slovenia
[6] Univ Ljubljana, Fac Chem & Chem Technol, Ljubljana, Slovenia
关键词
CoNi alloy; Nanocomposite; Magnetic nanoparticles; Magnetic heating; Magnetic catalysis; CURIE-TEMPERATURE; NANOPARTICLES; COMPOSITE; HYDROGENATION; LOSSES; NICKEL; FIELD; CO;
D O I
10.1016/j.jallcom.2024.176109
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetic nanocomposites with a high surface area matrix are attractive materials for novel catalyst supports. They can be remotely and selectively heated inside the reactor vessel when exposed to a high-frequency alternating magnetic field (AMF). These so-called "magnetic" or "cold" catalysts can revolutionize the chemical industry's electrification, particularly for renewable energy applications such as hydrogen storage and release. In this study, we developed a scalable method for synthesizing magnetic CoxNi1-x-Al2O3 nanocomposites. The synthesis is based on the co-precipitation of Co and Ni ions from an aqueous solution, coating the precipitated nanoparticles with a boehmite (AlOOH) shell via the in-situ hydrolysis of AlN powder and reduction at 850 degrees C in a flow of H-2. A combination of X-ray diffractometry (XRD) and scanning transmission electron microscopy (STEM/EDXS) showed the formation of nanocomposites containing globular CoxNi1-x nanoparticles (similar to 14 nm in size), homogenously distributed within the matrix composed of thin gamma-Al2O3 nanosheets (similar to 30 nm wide and up to 3 nm thick), providing a high specific surface area (similar to 140 m(2) g(-1)). The reduction process was studied using high-temperature XRD, hydrogen-temperature programmed reduction (H-2-TPR), and X-ray photoelectron spectroscopy (XPS). The magnetic properties were measured with a vibrating-sample magnetometer (VSM). The nanocomposites exhibited an excellent heating ability, exceeding 800 degrees C within a few minutes, even at relatively low AMF amplitudes (up to 58 mT) in a fixed-bed reactor. These results underscore the potential of CoxNi1-x-Al2O3 nanocomposites for high-temperature catalytic processes, marking an advancement in magnetic catalyst support synthesis.
引用
收藏
页数:11
相关论文
共 37 条
[1]   Optimized CoNi Nanoparticle Composition for Curie-Temperature-Controlled Induction-Heated Catalysis [J].
Almind, Mads R. ;
Vinum, Morten G. ;
Wismann, Sebastian T. ;
Hansen, Mikkel F. ;
Vendelbo, Soren B. ;
Engbaek, Jakob S. ;
Mortensen, Peter M. ;
Chorkendorff, Ib ;
Frandsen, Cathrine .
ACS APPLIED NANO MATERIALS, 2021, 4 (11) :11537-11544
[2]   Hydrodeoxygenation Using Magnetic Induction: High-Temperature Heterogeneous Catalysis in Solution [J].
Asensio, Juan M. ;
Miguel, Ana B. ;
Fazzini, Pier-Francesco ;
van Leeuwen, Piet W. N. M. ;
Chaudret, Bruno .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (33) :11306-11310
[3]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[4]   Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power [J].
Bordet, Alexis ;
Lacroix, Lise-Marie ;
Fazzini, Pier-Francesco ;
Carrey, Julian ;
Soulantica, Katerina ;
Chaudret, Bruno .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (51) :15894-15898
[5]   Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization [J].
Carrey, J. ;
Mehdaoui, B. ;
Respaud, M. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
[6]   Inductive Heating for Organic Synthesis by Using Functionalized Magnetic Nanoparticles Inside Microreactors [J].
Ceylan, Sascha ;
Friese, Carsten ;
Lammel, Christian ;
Mazac, Karel ;
Kirschning, Andreas .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (46) :8950-8953
[7]   A FUNDAMENTAL PARAMETERS APPROACH TO X-RAY LINE-PROFILE FITTING [J].
CHEARY, RW ;
COELHO, A .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1992, 25 (pt 2) :109-121
[8]   Mesocrystals:: Inorganic superstructures made by highly parallel crystallization and controlled alignment [J].
Cölfen, H ;
Antonietti, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (35) :5576-5591
[9]   NEW DETERMINATIONS OF SATURATION MAGNETIZATION OF NICKEL AND IRON [J].
DANAN, H ;
HERR, A ;
MEYER, AJP .
JOURNAL OF APPLIED PHYSICS, 1968, 39 (2P1) :669-&
[10]   Electro-hydrogenation of biomass-derived levulinic acid to γ-vaterolactone via the magnetic heating of a Ru nanocatalyst [J].
Gyergyek, Saso ;
Grilc, Miha ;
Likozar, Blaz ;
Makovec, Darko .
GREEN CHEMISTRY, 2022, 24 (07) :2788-2794