Genome-wide identification of actin-depolymerizing factor family genes in melon (Cucumis melo L.) and CmADF1 plays an important role in low temperature tolerance

被引:1
|
作者
Lv, Yanling [1 ,2 ,3 ]
Liu, Shihang [1 ]
Zhang, Jiawang [3 ]
Cheng, Jianing [1 ]
Wang, Jinshu [1 ]
Wang, Lina [1 ]
Li, Mingyang [1 ]
Wang, Lu [1 ]
Bi, Shuangtian [1 ]
Liu, Wei [3 ]
Zhang, Lili [3 ]
Liu, Shilei [3 ]
Yan, Dabo [1 ]
Diao, Chengxuan [1 ]
Zhang, Shaobin [1 ]
He, Ming [3 ]
Gao, Yue [1 ]
Wang, Che [1 ]
机构
[1] Shenyang Agr Univ, Coll Biosci & Biotechnol, Shenyang, Peoples R China
[2] Shenyang Agr Univ, Coll Hort, Shenyang, Peoples R China
[3] Liaoning Acad Agr Sci, Inst Vegetable, Shenyang, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2024年 / 15卷
基金
中国国家自然科学基金;
关键词
genome-wide identification; CmADF1; low temperature; oriental melon; Arabidopsis; BINDING PROTEINS; ARABIDOPSIS; CYTOSKELETON; SALT; GROWTH; WHEAT; REORGANIZATION; CONTRIBUTES; RESISTANCE; FILAMENTS;
D O I
10.3389/fpls.2024.1419719
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Actin depolymerizing factors (ADFs), as the important actin-binding proteins (ABPs) with depolymerizing/severing actin filaments, play a critical role in plant growth and development, and in response to biotic and abiotic stresses. However, the information and function of the ADF family in melon remains unclear. In this study, 9 melon ADF genes (CmADFs) were identified, distributed in 4 subfamilies, and located on 6 chromosomes respectively. Promoter analysis revealed that the CmADFs contained a large number of cis-acting elements related to hormones and stresses. The similarity of CmADFs with their Arabidopsis homologue AtADFs in sequence, structure, important sites and tissue expression confirmed that ADFs were conserved. Gene expression analysis showed that CmADFs responded to low and high temperature stresses, as well as ABA and SA signals. In particular, CmADF1 was significantly up-regulated under above all stress and hormone treatments, indicating that CmADF1 plays a key role in stress and hormone signaling responses, so CmADF1 was selected to further study the mechanism in plant tolerance low temperature. Under low temperature, virus-induced gene silencing (VIGS) of CmADF1 in oriental melon plants showed increased sensitivity to low temperature stress. Consistently, the stable genetic overexpression of CmADF1 in Arabidopsis improved their low temperature tolerance, possibly due to the role of CmADF1 in the depolymerization of actin filaments. Overall, our findings indicated that CmADF genes, especially CmADF1, function in response to abiotic stresses in melon.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Genome-Wide Identification, Phylogenetic and Expression Pattern Analysis of GATA Family Genes in Cucumber (Cucumis sativus L.)
    Zhang, Kaijing
    Jia, Li
    Yang, Dekun
    Hu, Yuchao
    Njogu, Martin Kagiki
    Wang, Panqiao
    Lu, Xiaomin
    Yan, Congsheng
    PLANTS-BASEL, 2021, 10 (08):
  • [22] Genome-wide identification of mitogen-activated protein kinase (MAPK) cascade and expression profiling of CmMAPKs in melon (Cucumis melo L.)
    Zhang, Xiaolan
    Li, Yuepeng
    Xing, Qiaojuan
    Yue, Lingqi
    Qi, Hongyan
    PLOS ONE, 2020, 15 (05):
  • [23] Beta-galactosidase gene family genome-wide identification and expression analysis of members related to fruit softening in melon (Cucumis melo L.)
    Haobin Pan
    Yinhan Sun
    Miaomiao Qiao
    Hongyan Qi
    BMC Genomics, 23
  • [24] Genome-wide identification and comparative analysis of MATE gene family in Cucurbitaceae species and their regulatory role in melon (Cucumis melo) under salt stress
    Shah, Iftikhar Hussain
    Manzoor, Muhammad Aamir
    Sabir, Irfan Ali
    Ashraf, Muhammad
    Haq, Fazal
    Arif, Samiah
    Abdullah, Muhammad
    Niu, Qingliang
    Zhang, Yidong
    HORTICULTURE ENVIRONMENT AND BIOTECHNOLOGY, 2022, 63 (04) : 595 - 612
  • [25] Genome-wide identification, characterization, and expression analysis related to autotoxicity of the GST gene family in Cucumis melo L.
    Wang, Jingrong
    Zhang, Zhengda
    Wu, Jinghua
    Han, Xiaoyun
    Wang-Pruski, Gefu
    Zhang, Zhizhong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 155 : 59 - 69
  • [26] Genome-wide Identification and Characteristics Analysis of Melon (Cucumis melo L.) MYB Transcription Factors and Their Responses to Autotoxicity and Saline-alkali Stress
    Zhang, Yifang
    Xie, Ziyan
    Wang, Fangyan
    Zhong, Cheng
    Liu, Yumo
    Li, Zhiying
    Wang-Pruski, Gefu
    Zhang, Zhizhong
    TROPICAL PLANT BIOLOGY, 2022, 15 (01) : 93 - 109
  • [27] Genome-wide identification of the melon (Cucumis melo L.) response regulator gene family and functional analysis of CmRR6 and CmPRR3 in response to cold stress
    Li, Lili
    Zhang, Xiuyue
    Ding, Fei
    Hou, Juan
    Wang, Jiyu
    Luo, Renren
    Mao, Wenwen
    Li, Xiang
    Zhu, Huayu
    Yang, Luming
    Li, Ying
    Hu, Jianbin
    JOURNAL OF PLANT PHYSIOLOGY, 2024, 292
  • [28] Genome-Wide Identification of β-Ketoacyl CoA Synthase Gene Family in Melon (Cucumis melo L.) and Its Expression Analysis in Autotoxicity, Saline-Alkali, and Microplastic Exposure Environments
    Zhang, Lizhen
    Wang, Mingcheng
    Tang, Xianhuan
    Yang, Xinyue
    Zhang, Zhizhong
    Wu, Jinghua
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2025, 47 (03)
  • [29] Genome-wide identification of the OMT gene family in Cucumis melo L. and expression analysis under abiotic and biotic stress
    Wang, Shuoshuo
    Wang, Chuang
    Lv, Futang
    Chu, Pengfei
    Jin, Han
    PEERJ, 2023, 11
  • [30] Genome-Wide Identification and Abiotic Stress Expression Analysis of CKX and IPT Family Genes in Cucumber (Cucumis sativus L.)
    Xu, Yang
    Ran, Shengxiang
    Li, Shuhao
    Lu, Junyang
    Huang, Weiqun
    Zheng, Jingyuan
    Hou, Maomao
    Zhong, Fenglin
    PLANTS-BASEL, 2024, 13 (03):