Simultaneous Confidence Intervals for Signal Detection and Ascertaining Precision of Adverse Event Rates in Clinical Trials
被引:0
|
作者:
Diao, Guoqing
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Biostat & Bioinformat, 800 22nd St NW,Suite 7560, Washington, DC 20052 USAGeorge Washington Univ, Dept Biostat & Bioinformat, 800 22nd St NW,Suite 7560, Washington, DC 20052 USA
Diao, Guoqing
[1
]
Gamalo, Margaret
论文数: 0引用数: 0
h-index: 0
机构:
Pfizer Inc, Inflammat & Immunol, New York, NY USAGeorge Washington Univ, Dept Biostat & Bioinformat, 800 22nd St NW,Suite 7560, Washington, DC 20052 USA
Gamalo, Margaret
[2
]
Tiwari, Ram
论文数: 0引用数: 0
h-index: 0
机构:
Bristol Myers Squibb, Stat Methodol, Berkeley Hts, NJ USAGeorge Washington Univ, Dept Biostat & Bioinformat, 800 22nd St NW,Suite 7560, Washington, DC 20052 USA
Tiwari, Ram
[3
]
机构:
[1] George Washington Univ, Dept Biostat & Bioinformat, 800 22nd St NW,Suite 7560, Washington, DC 20052 USA
[2] Pfizer Inc, Inflammat & Immunol, New York, NY USA
[3] Bristol Myers Squibb, Stat Methodol, Berkeley Hts, NJ USA
来源:
STATISTICS IN BIOPHARMACEUTICAL RESEARCH
|
2024年
关键词:
Bonferroni correction;
Common adverse reactions;
Hypothesis testing;
Influence functions;
Rademacher random variables;
FALSE DISCOVERY RATE;
TARGET;
D O I:
10.1080/19466315.2024.2388523
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The marketing authorization of a medicinal product is contingent upon demonstration of safety and efficacy in support of the product's labeled conditions of use. To demonstrate safety, one group of adverse events that requires detailed consideration is common adverse reactions (ARs). ARs and their frequency are reported in prescription drug labeling in the US and EU. The determination of these adverse reactions generally takes a simple approach-usually, inclusion is through the frequency of reporting and whether the adverse event (AE) rate for the drug exceeds the placebo rate. This standard method does not account for confounders or multiplicity. To overcome these limitations, we propose a Monte Carlo approach to detect drug safety signals in clinical trials. We fit regression models incorporating covariates to assess the drug effect on the rate of AEs. Adjustment for multiplicity is carried out through the construction of simultaneous confidence intervals accounting for arbitrary correlations. A computationally efficient multiplier bootstrap approach using the Rademacher sequences is developed to generate random samples from the joint distribution of the estimators for all the AE rates. Compared to Bonferroni-based methods, the proposed method leads to narrower simultaneous confidence intervals and is more powerful in detecting potential safety signals.
机构:
JMP Stat Discovery LLC, 100 SAS Campus Dr, Cary, NC 27513 USA
Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC 27599 USAJMP Stat Discovery LLC, 100 SAS Campus Dr, Cary, NC 27513 USA
Zink, Richard C.
Lyzinski, Rebecca
论文数: 0引用数: 0
h-index: 0
机构:
JMP Stat Discovery LLC, 100 SAS Campus Dr, Cary, NC 27513 USAJMP Stat Discovery LLC, 100 SAS Campus Dr, Cary, NC 27513 USA
Lyzinski, Rebecca
Mann, Geoffrey
论文数: 0引用数: 0
h-index: 0
机构:
JMP Stat Discovery LLC, 100 SAS Campus Dr, Cary, NC 27513 USAJMP Stat Discovery LLC, 100 SAS Campus Dr, Cary, NC 27513 USA
机构:
GSK, Global Safety, Wavre, Belgium
GSK Vaccines, Ave Fleming 20, B-1300 Wavre, BelgiumGSK, Global Safety, Wavre, Belgium
Haguinet, Francois
Tibaldi, Fabian
论文数: 0引用数: 0
h-index: 0
机构:
GSK, Global Stat, Rixensart, BelgiumGSK, Global Safety, Wavre, Belgium
Tibaldi, Fabian
Dessart, Christophe
论文数: 0引用数: 0
h-index: 0
机构:
GSK, Global Safety, Wavre, BelgiumGSK, Global Safety, Wavre, Belgium
Dessart, Christophe
Bate, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
GSK, Global Safety, Brentford, Middx, England
London Sch Hyg & Trop Med, Dept Noncommun Dis Epidemiol, London, England
NYU Grossman Sch Med, Dept Med, New York, NY USAGSK, Global Safety, Wavre, Belgium