An Analysis of a Commercial GNSS-R Soil Moisture Dataset

被引:1
作者
Al-Khaldi, Mohammad M. [1 ,2 ]
Johnson, Joel T. [1 ,2 ]
Horton, Dustin [1 ,2 ]
McKague, Darren S. [3 ]
Twigg, Dorina [4 ]
Russel, Anthony [4 ]
Policelli, Frederick S. [5 ]
Ouellette, Jeffrey D. [6 ]
Bindlish, Rajat [5 ]
Park, Jeonghwan [5 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, ElectroSci Lab, Columbus, OH 43210 USA
[3] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA
[5] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[6] US Naval Res Lab, Washington, DC 20375 USA
关键词
Soil moisture; Surface roughness; Rough surfaces; Receivers; Reflectivity; Scattering; Surface treatment; Bistatic radar systems; CubeSats; global navigation satellite systems reflectometry (GNSS-R); rough surface scattering; SmallSats; soil moisture; SIGNALS; PREDICTABILITY; REFLECTIONS; SCATTERING; DYNAMICS; SYSTEM; OCEAN; SMOS;
D O I
10.1109/JSTARS.2024.3449773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analysis of a Level-2 (L2) soil moisture record extending from 1 May 2021 to 1 January 2024 derived from Spire, Inc.'s Global Navigation Satellite System Reflectometry (GNSS-R) observatories is presented. The product's sensitivity to large scale soil moisture variability is demonstrated using an example of a 2022 flood in Pakistan. Product consistency among the constellation's multiple satellites is also investigated; no clear evidence of intersatellite biases is observed. Further comparisons are performed with soil moisture datasets from the Soil Moisture Active Passive (SMAP) and Cyclone Global Navigation Satellite System (CYGNSS) missions, from the European Center for Medium-Range Weather Forecasts Reanalysis v5 (ERA5), and from in situ International Soil Moisture Network (ISMN) sites. Although an overall product correlation with SMAP soil moisture of approximately 85$\%$ is determined, per-pixel correlations vary significantly and per-pixel root-mean-square errors (RMSE) can range from 0.02 to 0.09 (cm(3)/cm(3)) depending on land class. The importance of applying the product's quality flags is also demonstrated. The influence of other calibration effects and inland water body contamination on these results is also discussed.
引用
收藏
页码:15480 / 15493
页数:14
相关论文
共 50 条
  • [41] ESTIMATING SOIL MOISTURE CONTENT USING GNSS-R TECHNIQUE BASED ON STATISTICS
    Peng, Xuefeng
    Chen, Xiuwan
    Xiao, Han
    Wan, Wei
    Yang, Ting
    Yang, Zhenyu
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2004 - 2007
  • [42] Spaceborne GNSS-R for retrieving soil moisture based on the correction of stage model
    Tao T.
    Li J.
    Zhu Y.
    Wang J.
    Chen H.
    Shi M.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (09): : 1942 - 1950
  • [43] A method for retrieving soil moisture from GNSS-R by using experiment data
    毛克彪
    Ma Ying
    Shen Xinyi
    Xia Lang
    Tian Shiying
    Han Jiaqi
    Liu Qing
    High Technology Letters, 2015, 21 (02) : 219 - 223
  • [44] A novel global grid model for soil moisture retrieval considering geographical disparity in spaceborne GNSS-R
    Huang, Liangke
    Pan, Anrong
    Chen, Fade
    Guo, Fei
    Li, Haojun
    Liu, Lilong
    SATELLITE NAVIGATION, 2024, 5 (01):
  • [45] GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation
    Jia, Yan
    Jin, Shuanggen
    Savi, Patrizia
    Gao, Yun
    Tang, Jing
    Chen, Yixiang
    Li, Wenmei
    REMOTE SENSING, 2019, 11 (14)
  • [46] Machine learning-based global soil moisture estimation using GNSS-R
    Senyurek, Volkan
    Lei, Fangni
    Gurbuz, Ali C.
    Kurum, Mehmet
    Moorhead, Robert
    SOUTHEASTCON 2022, 2022, : 434 - 435
  • [47] Initial results of China's GNSS-R airborne campaign: soil moisture retrievals
    Wan, Wei
    Bai, Weihua
    Zhao, Limin
    Long, Di
    Sun, Yueqiang
    Meng, Xiangguang
    Chen, Hua
    Cui, Xiai
    Hong, Yang
    SCIENCE BULLETIN, 2015, 60 (10) : 964 - 971
  • [48] Forest biomass monitoring with GNSS-R: Theoretical simulations
    Ferrazzoli, P.
    Guerriero, L.
    Pierdicca, N.
    Rahmoune, R.
    ADVANCES IN SPACE RESEARCH, 2011, 47 (10) : 1823 - 1832
  • [49] On the Synergy of Airborne GNSS-R and Landsat 8 for Soil Moisture Estimation
    Sanchez, Nilda
    Alonso-Arroyo, Alberto
    Martinez-Fernandez, Jose
    Piles, Maria
    Gonzalez-Zamora, Angel
    Camps, Adriano
    Vall-llosera, Merce
    REMOTE SENSING, 2015, 7 (08): : 9954 - 9974
  • [50] INCIDENCE ANGLE NORMALIZATION OF SPACEBORNE GNSS-R SURFACE REFLECTIVITY FOR SOIL MOISTURE RETRIEVAL
    Setti, Paulo T., Jr.
    Tabibi, Sajad
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 510 - 513