An Analysis of a Commercial GNSS-R Soil Moisture Dataset

被引:1
|
作者
Al-Khaldi, Mohammad M. [1 ,2 ]
Johnson, Joel T. [1 ,2 ]
Horton, Dustin [1 ,2 ]
McKague, Darren S. [3 ]
Twigg, Dorina [4 ]
Russel, Anthony [4 ]
Policelli, Frederick S. [5 ]
Ouellette, Jeffrey D. [6 ]
Bindlish, Rajat [5 ]
Park, Jeonghwan [5 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, ElectroSci Lab, Columbus, OH 43210 USA
[3] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA
[5] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[6] US Naval Res Lab, Washington, DC 20375 USA
关键词
Soil moisture; Surface roughness; Rough surfaces; Receivers; Reflectivity; Scattering; Surface treatment; Bistatic radar systems; CubeSats; global navigation satellite systems reflectometry (GNSS-R); rough surface scattering; SmallSats; soil moisture; SIGNALS; PREDICTABILITY; REFLECTIONS; SCATTERING; DYNAMICS; SYSTEM; OCEAN; SMOS;
D O I
10.1109/JSTARS.2024.3449773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analysis of a Level-2 (L2) soil moisture record extending from 1 May 2021 to 1 January 2024 derived from Spire, Inc.'s Global Navigation Satellite System Reflectometry (GNSS-R) observatories is presented. The product's sensitivity to large scale soil moisture variability is demonstrated using an example of a 2022 flood in Pakistan. Product consistency among the constellation's multiple satellites is also investigated; no clear evidence of intersatellite biases is observed. Further comparisons are performed with soil moisture datasets from the Soil Moisture Active Passive (SMAP) and Cyclone Global Navigation Satellite System (CYGNSS) missions, from the European Center for Medium-Range Weather Forecasts Reanalysis v5 (ERA5), and from in situ International Soil Moisture Network (ISMN) sites. Although an overall product correlation with SMAP soil moisture of approximately 85$\%$ is determined, per-pixel correlations vary significantly and per-pixel root-mean-square errors (RMSE) can range from 0.02 to 0.09 (cm(3)/cm(3)) depending on land class. The importance of applying the product's quality flags is also demonstrated. The influence of other calibration effects and inland water body contamination on these results is also discussed.
引用
收藏
页码:15480 / 15493
页数:14
相关论文
共 50 条
  • [31] A Deep-Learning Approach to Soil Moisture Estimation with GNSS-R
    Roberts, Thomas Maximillian
    Colwell, Ian
    Chew, Clara
    Lowe, Stephen
    Shah, Rashmi
    REMOTE SENSING, 2022, 14 (14)
  • [32] SOIL MOISTURE AND VEGETATION HEIGHT RETRIEVAL USING GNSS-R TECHNIQUES
    Rodriguez-Alvarez, N.
    Monerris, A.
    Bosch-Lluis, X.
    Camps, A.
    Vall-Llossera, M.
    Marchan-Hernandez, J. F.
    Ramos-Perez, I.
    Valencia, E.
    Martinez-Fernandez, J.
    Sanchez-Martin, N.
    Baroncini-Turricchia, G.
    Perez-Gutierrez, C.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2171 - +
  • [33] A Numerical Kirchhoff Simulator for GNSS-R Land Applications
    Gu, Weihui
    Xu, Haokui
    Tsang, Leung
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2019, 164 : 119 - 133
  • [34] Sensitivity of Delay Doppler Map in Spaceborne GNSS-R to Geophysical Variables of the Ocean
    Camps, Adriano
    Park, Hyuk
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8624 - 8631
  • [35] Sensing Sea Ice Based on Doppler Spread Analysis of Spaceborne GNSS-R Data
    Zhu, Yongchao
    Tao, Tingye
    Yu, Kegen
    Li, Zhenxuan
    Qu, Xiaochuan
    Ye, Zhourun
    Geng, Jun
    Zou, Jingui
    Semmling, Maximilian
    Wickert, Jens
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 217 - 226
  • [36] Evaluation of Spire GNSS-R reflectivity from multiple GNSS constellations for soil moisture estimation
    Setti, Paulo T.
    Tabibi, Sajad
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (20) : 6422 - 6441
  • [37] SENSITIVITY TO SOIL MOISTURE AND OBSERVATION GEOMETRY OF SPACEBORNE GNSS-R DELAY-DOPPLER MAPS
    Park, H.
    Camps, A.
    Castellvi, J.
    Vall-llossera, M.
    Portal, G.
    Rossato, L.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8358 - 8361
  • [38] A Refined Land Type Digitization Method of GNSS-R Soil Moisture Inversion
    Guo F.
    Dong G.
    Zhu Y.
    Zhang X.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (01): : 47 - 55
  • [39] Airborne GNSS-R Polarimetric Measurements for Soil Moisture and Above-Ground Biomass Estimation
    Egido, Alejandro
    Paloscia, Simonetta
    Motte, Erwan
    Guerriero, Leila
    Pierdicca, Nazzareno
    Caparrini, Marco
    Santi, Emanuele
    Fontanelli, Giacomo
    Floury, Nicola
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (05) : 1522 - 1532
  • [40] First Evaluation of Topography on GNSS-R: An Empirical Study Based on a Digital Elevation Model
    Carreno-Luengo, Hugo
    Luzi, Guido
    Crosetto, Michele
    REMOTE SENSING, 2019, 11 (21)