An Analysis of a Commercial GNSS-R Soil Moisture Dataset

被引:1
|
作者
Al-Khaldi, Mohammad M. [1 ,2 ]
Johnson, Joel T. [1 ,2 ]
Horton, Dustin [1 ,2 ]
McKague, Darren S. [3 ]
Twigg, Dorina [4 ]
Russel, Anthony [4 ]
Policelli, Frederick S. [5 ]
Ouellette, Jeffrey D. [6 ]
Bindlish, Rajat [5 ]
Park, Jeonghwan [5 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, ElectroSci Lab, Columbus, OH 43210 USA
[3] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA
[5] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[6] US Naval Res Lab, Washington, DC 20375 USA
关键词
Soil moisture; Surface roughness; Rough surfaces; Receivers; Reflectivity; Scattering; Surface treatment; Bistatic radar systems; CubeSats; global navigation satellite systems reflectometry (GNSS-R); rough surface scattering; SmallSats; soil moisture; SIGNALS; PREDICTABILITY; REFLECTIONS; SCATTERING; DYNAMICS; SYSTEM; OCEAN; SMOS;
D O I
10.1109/JSTARS.2024.3449773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analysis of a Level-2 (L2) soil moisture record extending from 1 May 2021 to 1 January 2024 derived from Spire, Inc.'s Global Navigation Satellite System Reflectometry (GNSS-R) observatories is presented. The product's sensitivity to large scale soil moisture variability is demonstrated using an example of a 2022 flood in Pakistan. Product consistency among the constellation's multiple satellites is also investigated; no clear evidence of intersatellite biases is observed. Further comparisons are performed with soil moisture datasets from the Soil Moisture Active Passive (SMAP) and Cyclone Global Navigation Satellite System (CYGNSS) missions, from the European Center for Medium-Range Weather Forecasts Reanalysis v5 (ERA5), and from in situ International Soil Moisture Network (ISMN) sites. Although an overall product correlation with SMAP soil moisture of approximately 85$\%$ is determined, per-pixel correlations vary significantly and per-pixel root-mean-square errors (RMSE) can range from 0.02 to 0.09 (cm(3)/cm(3)) depending on land class. The importance of applying the product's quality flags is also demonstrated. The influence of other calibration effects and inland water body contamination on these results is also discussed.
引用
收藏
页码:15480 / 15493
页数:14
相关论文
共 50 条
  • [21] Analysis of Key Issues on GNSS-R Soil Moisture Retrieval Based on Different Antenna Patterns
    Li, Fei
    Peng, Xuefeng
    Chen, Xiuwan
    Liu, Maolin
    Xu, Liwen
    SENSORS, 2018, 18 (08)
  • [22] An improved soil moisture retrieval method considering azimuth angle changes for spaceborne GNSS-R
    Ye, Yiling
    Liu, Lilong
    Chen, Fade
    Huang, Liangke
    ADVANCES IN SPACE RESEARCH, 2025, 75 (01) : 178 - 189
  • [23] Static Soil Moisture Retrieval Measurements Based on GNSS-R
    Tengda Pei
    Yuekun Pei
    2017 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL SYSTEMS AND COMMUNICATIONS (ICCSC 2017), 2017, : 29 - 33
  • [24] On the Coherency of Ocean and Land Surface Specular Scattering for GNSS-R and Signals of Opportunity Systems
    Balakhder, Ahmed M.
    Al-Khaldi, Mohammad M.
    Johnson, Joel T.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12): : 10426 - 10436
  • [25] AIRBORNE GNSS-R, THERMAL AND OPTICAL DATA RELATIONSHIPS FOR SOIL MOISTURE RETRIEVALS
    Sanchez, N.
    Alonso-Arroyo, A.
    Gonzalez-Zamora, A.
    Martinez-Fernandez, J.
    Camps, A.
    Vall-llosera, M.
    Pablos, M.
    Herrero-Jimenez, C. M.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4785 - 4788
  • [26] Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation
    Camps, Adriano
    Park, Hyuk
    Pablos, Miriam
    Foti, Giuseppe
    Gommenginger, Christine P.
    Liu, Pang-Wei
    Judge, Jasmeet
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (10) : 4730 - 4742
  • [27] SOIL MOISTURE AND VEGETATION IMPACT IN GNSS-R TECHDEMOSAT-1 OBSERVATIONS
    Camps, A.
    Park, H.
    Pablos, M.
    Foti, G.
    Gommenginger, C.
    Liu, Pang-Wei
    Judge, J.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1982 - 1984
  • [28] Entropy-Based Coherence Metric for Land Applications of GNSS-R
    Russo, Ilaria Mara
    di Bisceglie, Maurizio
    Galdi, Carmela
    Lavalle, Marco
    Zuffada, Cinzia
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] Soil Moisture Content Estimation Using GNSS Reflectometry (GNSS-R)
    Malik, Jabir Shabbir
    Zhang Jingrui
    Naqvi, Najam Abbas
    2017 FIFTH INTERNATIONAL CONFERENCE ON AEROSPACE SCIENCE & ENGINEERING (ICASE), 2017,
  • [30] An Improved Method for Water Body Removal in Spaceborne GNSS-R Soil Moisture Retrieval
    Yang, Wentao
    Guo, Fei
    Zhang, Xiaohong
    Zhu, Yifan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61