Heritability Estimation Approaches Utilizing Genome-Wide Data

被引:12
作者
Srivastava, Amit K. [1 ,2 ,3 ]
Williams, Scott M. [5 ,6 ]
Zhang, Ge [1 ,2 ,3 ,4 ,7 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Div Human Genet, Cincinnati, OH 45229 USA
[2] Cincinnati Childrens Hosp Med Ctr, Perinatal Inst, Ctr Prevent Preterm Birth, Cincinnati, OH 45229 USA
[3] March Dimes Prematur Res Ctr Ohio Collaborat, Cincinnati, OH 45221 USA
[4] Univ Cincinnati, Dept Pediat, Coll Med, Cincinnati, OH 45221 USA
[5] Case Western Reserve Univ, Sch Med, Dept Populat & Quantitat Hlth Sci, Cleveland, OH USA
[6] Case Western Reserve Univ, Sch Med, Dept Genet & Genome Sci, Cleveland, OH 44106 USA
[7] Case Western Reserve Univ, Inst Computat Biol, Cleveland, OH 44106 USA
来源
CURRENT PROTOCOLS | 2023年 / 3卷 / 04期
关键词
individual-level data; SNP-heritability; summary results; BODY-MASS INDEX; MISSING HERITABILITY; SNP-HERITABILITY; COMPLEX TRAITS; QUANTITATIVE GENETICS; SCORE REGRESSION; BIRTH-WEIGHT; SELECTION; ASSOCIATION; LINKAGE;
D O I
10.1002/cpz1.734
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Prior to the development of genome-wide arrays and whole genome sequencing technologies, heritability estimation mainly relied on the study of related individuals. Over the past decade, various approaches have been developed to estimate SNP-based narrow-sense heritability (hSNP2${\rm{h}}_{{\rm{SNP}}}<^>2$) in unrelated individuals. These latter approaches use either individual-level genetic variations or summary results from genome-wide association studies (GWAS). Recently, several studies compared these approaches using extensive simulations and empirical datasets. However, sparse information on hands-on training necessitates revisiting these approaches from the perspective of a stepwise guide for practical applications. Here, we provide an overview of the commonly used SNP-heritability estimation approaches utilizing genome-wide array, imputed or whole genome data from unrelated individuals, or summary results. We not only discuss these approaches based on their statistical concepts, utility, advantages, and limitations, but also provide step-by-step protocols to apply these approaches. For illustration purposes, we estimate hSNP2${\rm{h}}_{{\rm{SNP}}}<^>2$ of height and BMI utilizing individual-level data from The Northern Finland Birth Cohort (NFBC) and summary results from the Genetic Investigation of ANthropometric Traits (GIANT;) consortium. We present this review as a template for the researchers who estimate and use heritability in their studies and as a reference for geneticists who develop or extend heritability estimation approaches. (c) 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.Basic Protocol 1: GREML (GCTA)Alternate Protocol 1: Stratified GREMLBasic Protocol 2: LDAKAlternate Protocol 2: Stratified LDAKBasic Protocol 3: Threshold GREMLBasic Protocol 4: LD score (LDSC) regressionBasic Protocol 5: SumHer
引用
收藏
页数:31
相关论文
共 50 条
[31]   Application of genome-wide SNP data for uncovering pairwise relationships and quantitative trait loci [J].
Sham, P. C. ;
Cherny, S. S. ;
Purcell, S. .
GENETICA, 2009, 136 (02) :237-243
[32]   Application of genome-wide SNP data for uncovering pairwise relationships and quantitative trait loci [J].
P. C. Sham ;
S. S. Cherny ;
S. Purcell .
Genetica, 2009, 136 :237-243
[33]   Heritability and genome-wide analyses of problematic peer relationships during childhood and adolescence [J].
St Pourcain, Beate ;
Haworth, C. M. A. ;
Davis, O. S. P. ;
Wang, Kai ;
Timpson, Nicholas J. ;
Evans, David M. ;
Kemp, John P. ;
Ronald, Angelica ;
Price, Tom ;
Meaburn, Emma ;
Ring, Susan M. ;
Golding, Jean ;
Hakonarson, Hakon ;
Plomin, R. ;
Smith, George Davey .
HUMAN GENETICS, 2015, 134 (06) :539-551
[34]   Heritability and genome-wide linkage analysis of migraine in the genetic isolate of Norfolk Island [J].
Cox, Hannah C. ;
Lea, Rod A. ;
Bellis, Claire ;
Nyholt, Dale R. ;
Dyer, Thomas D. ;
Haupt, Larisa M. ;
Charlesworth, Jac ;
Matovinovic, Elizabeth ;
Blangero, John ;
Griffiths, Lyn R. .
GENE, 2012, 494 (01) :119-123
[35]   Testing the key assumption of heritability estimates based on genome-wide genetic relatedness [J].
Conley, Dalton ;
Siegal, Mark L. ;
Domingue, Benjamin W. ;
Harris, Kathleen Mullan ;
McQueen, Matthew B. ;
Boardman, Jason D. .
JOURNAL OF HUMAN GENETICS, 2014, 59 (06) :342-345
[36]   Heritability and genome-wide association study of blood pressure in Chinese adult twins [J].
Chen, Jiahao ;
Wang, Weijing ;
Li, Zhaoying ;
Xu, Chunsheng ;
Tian, Xiaocao ;
Zhang, Dongfeng .
MOLECULAR GENETICS & GENOMIC MEDICINE, 2021, 9 (11)
[37]   Genome-Wide Association Mapping With Longitudinal Data [J].
Furlotte, Nicholas A. ;
Eskin, Eleazar ;
Eyheramendy, Susana .
GENETIC EPIDEMIOLOGY, 2012, 36 (05) :463-471
[38]   Heteroscedastic Ridge Regression Approaches for Genome-Wide Prediction With a Focus on Computational Efficiency and Accurate Effect Estimation [J].
Hofheinz, Nina ;
Frisch, Matthias .
G3-GENES GENOMES GENETICS, 2014, 4 (03) :539-546
[39]   Genome-wide approaches (GWA) in oral and craniofacial diseases research [J].
Kim, H. ;
Gordon, S. ;
Dionne, R. .
ORAL DISEASES, 2013, 19 (02) :111-120
[40]   Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies [J].
Sella, Guy ;
Barton, Nicholas H. .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 20, 2019, 2019, 20 :461-493