Spatial Attention Feedback Iteration for Lightweight Salient Object Detection in Optical Remote Sensing Images

被引:7
作者
Luo, HuiLan [1 ]
Wang, JianQin [1 ]
Liang, BoCheng [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Informat Engn, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image edge detection; Optical sensors; Optical imaging; Optical feedback; Semantics; Object detection; Feedback; lightweight salient object detection (SOD); multiscale learning; optical remote sensing image (ORSI); spatial attention (SA); NETWORK;
D O I
10.1109/JSTARS.2024.3435385
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Salient object detection in optical remote sensing images presents distinct challenges, primarily due to the small scale and background similarity of salient objects in images captured by satellite and aerial sensors. Traditional approaches often fail to effectively utilize high-resolution details from shallow features, focusing instead on the semantic depth of features, and typically employ complex, resource-intensive architectures. To overcome these limitations, this article introduces a novel lightweight network, the spatial attention feedback iteration network (SAFINet). SAFINet employs a unique approach by integrating a feature refinement via attention feedback module and a spatial correlation (SCorr) module. The FRAF module refines low-resolution spatial attention (SA) using high-resolution SA, while the SCorr module enhances the fusion of the SAs. These modules work collaboratively to effectively preserve detail integrity and clarity. In addition, a multiscale attention fusion module leverages multiscale information to enrich contextual detail. Our extensive testing on two benchmark datasets shows that SAFINet achieves superior performance in six out of eight metrics, with only 3.12 M parameters and 7.63 G FLOPs, demonstrating significant improvements over 18 state-of-the-art models.
引用
收藏
页码:13809 / 13823
页数:15
相关论文
共 44 条
[21]   A lightweight multi-scale context network for salient object detection in optical remote sensing images [J].
Lin, Yuhan ;
Sun, Han ;
Liu, Ningzhong ;
Bian, Yetong ;
Cen, Jun ;
Zhou, Huiyu .
2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, :238-244
[22]   A Simple Pooling-Based Design for Real-Time Salient Object Detection [J].
Liu, Jiang-Jiang ;
Hou, Qibin ;
Cheng, Ming-Ming ;
Feng, Jiashi ;
Jiang, Jianmin .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3912-3921
[23]   Scale computation on high spatial resolution remotely sensed imagery multi-scale segmentation [J].
Liu, Jianhua ;
Du, Mingyi ;
Mao, Zhengyuan .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (18) :5186-5214
[24]   SAMNet: Stereoscopically Attentive Multi-Scale Network for Lightweight Salient Object Detection [J].
Liu, Yun ;
Zhang, Xin-Yu ;
Bian, Jia-Wang ;
Zhang, Le ;
Cheng, Ming-Ming .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :3804-3814
[25]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[26]   Semantic-Edge Interactive Network for Salient Object Detection in Optical Remote Sensing Images [J].
Luo, Huilan ;
Liang, Bocheng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 :6980-6994
[27]   BASNet: Boundary-Aware Salient Object Detection [J].
Qin, Xuebin ;
Zhang, Zichen ;
Huang, Chenyang ;
Gao, Chao ;
Dehghan, Masood ;
Jagersand, Martin .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7471-7481
[28]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[29]   MobileNetV2: Inverted Residuals and Linear Bottlenecks [J].
Sandler, Mark ;
Howard, Andrew ;
Zhu, Menglong ;
Zhmoginov, Andrey ;
Chen, Liang-Chieh .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4510-4520
[30]   Fully Squeezed Multiscale Inference Network for Fast and Accurate Saliency Detection in Optical Remote-Sensing Images [J].
Shen, Kunye ;
Zhou, Xiaofei ;
Wan, Bin ;
Shi, Ran ;
Zhang, Jiyong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19