Spatial Attention Feedback Iteration for Lightweight Salient Object Detection in Optical Remote Sensing Images

被引:7
作者
Luo, HuiLan [1 ]
Wang, JianQin [1 ]
Liang, BoCheng [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Informat Engn, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image edge detection; Optical sensors; Optical imaging; Optical feedback; Semantics; Object detection; Feedback; lightweight salient object detection (SOD); multiscale learning; optical remote sensing image (ORSI); spatial attention (SA); NETWORK;
D O I
10.1109/JSTARS.2024.3435385
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Salient object detection in optical remote sensing images presents distinct challenges, primarily due to the small scale and background similarity of salient objects in images captured by satellite and aerial sensors. Traditional approaches often fail to effectively utilize high-resolution details from shallow features, focusing instead on the semantic depth of features, and typically employ complex, resource-intensive architectures. To overcome these limitations, this article introduces a novel lightweight network, the spatial attention feedback iteration network (SAFINet). SAFINet employs a unique approach by integrating a feature refinement via attention feedback module and a spatial correlation (SCorr) module. The FRAF module refines low-resolution spatial attention (SA) using high-resolution SA, while the SCorr module enhances the fusion of the SAs. These modules work collaboratively to effectively preserve detail integrity and clarity. In addition, a multiscale attention fusion module leverages multiscale information to enrich contextual detail. Our extensive testing on two benchmark datasets shows that SAFINet achieves superior performance in six out of eight metrics, with only 3.12 M parameters and 7.63 G FLOPs, demonstrating significant improvements over 18 state-of-the-art models.
引用
收藏
页码:13809 / 13823
页数:15
相关论文
共 44 条
[1]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Sihite, Dicky N. ;
Itti, Laurent .
COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 :414-429
[2]  
Chen ZY, 2020, AAAI CONF ARTIF INTE, V34, P10599
[3]   RRNet: Relational Reasoning Network With Parallel Multiscale Attention for Salient Object Detection in Optical Remote Sensing Images [J].
Cong, Runmin ;
Zhang, Yumo ;
Fang, Leyuan ;
Li, Jun ;
Zhao, Yao ;
Kwong, Sam .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[4]   Review of Visual Saliency Detection With Comprehensive Information [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Cheng, Ming-Ming ;
Lin, Weisi ;
Huang, Qingming .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (10) :2941-2959
[5]   Structure-measure: A New Way to Evaluate Foreground Maps [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Yun ;
Li, Tao ;
Borji, Ali .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4558-4567
[6]  
Fan DP, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P698
[7]   Saliency Detection in the Compressed Domain for Adaptive Image Retargeting [J].
Fang, Yuming ;
Chen, Zhenzhong ;
Lin, Weisi ;
Lin, Chia-Wen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (09) :3888-3901
[8]  
Feng JQ, 2024, IEEE T GEOSCI REMOTE, V62, DOI [10.1109/TGRS.2024.3374954, 10.1109/TGRS.2024.3403868]
[9]   Highly Efficient Salient Object Detection with 100K Parameters [J].
Gao, Shang-Hua ;
Tan, Yong-Qiang ;
Cheng, Ming-Ming ;
Lu, Chengze ;
Chen, Yunpeng ;
Yan, Shuicheng .
COMPUTER VISION - ECCV 2020, PT VI, 2020, 12351 :702-721
[10]   Saliency-Guided Quality Assessment of Screen Content Images [J].
Gu, Ke ;
Wang, Shiqi ;
Yang, Huan ;
Lin, Weisi ;
Zhai, Guangtao ;
Yang, Xiaokang ;
Zhang, Wenjun .
IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (06) :1098-1110