Positive Integer Powers of the Kronecker Sum of Two Tridiagonal Toeplitz Matrices

被引:0
作者
Mezzar, Y. [1 ]
Belghaba, K. [1 ]
机构
[1] Univ Oran 1, Dept Math, Lab Math & Its Applicat LAMAP, POB 1524, Oran 31000, Algeria
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2024年 / 14卷 / 02期
关键词
Kronecker sum; Toeplitz matrix; tridiagonal; diagonalizable; eigenvalues; eigenvectors; eigenpairs; EVEN ORDER;
D O I
10.59849/2218-6816.2024.2.46
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we give an explicit expression for calculating the arbitrary positive integer powers of the Kronecker sum of two tridiagonal Toeplitz matrices.
引用
收藏
页码:46 / 53
页数:8
相关论文
共 10 条
[1]  
Banerjee S., 2014, Linear Algebra and Matrix Analysis for Statistics
[2]  
Kreyszig E., 2011, Advanced Engineering Mathematics, V10th
[3]  
Laub A.J., 2005, Matrix Analysis for Scientists and Engineers
[4]  
Lyche T., 2020, Numerical Linear Algebra and Matrix Factorizations
[5]   On computing of arbitrary positive integer powers for one type of symmetric tridiagonal matrices of odd order - I [J].
Rimas, J .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (02) :1214-1217
[6]   On computing of arbitrary positive integer powers for one type of symmetric tridiagonal matrices of even order - II [J].
Rimas, J .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) :245-251
[7]   On computing of arbitrary positive integer powers for one type of symmetric tridiagonal matrices of even order-I [J].
Rimas, J .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (02) :783-787
[8]  
Salkuyeh DK, 2006, International Mathematical Forum, V1, P1061
[9]  
Van Loan CF, 2000, J COMPUT APPL MATH, V123, P85, DOI 10.1016/S0377-0427(00)00393-9
[10]   On the Kronecker Products and Their Applications [J].
Zhang, Huamin ;
Ding, Feng .
JOURNAL OF APPLIED MATHEMATICS, 2013,