Beyond pixel: Superpixel-based MRI segmentation through traditional machine learning and graph convolutional network

被引:0
|
作者
Khatun, Zakia [1 ,2 ]
Jonsson Jr, Halldor [3 ]
Tsirilaki, Mariella [4 ]
Maffulli, Nicola [5 ,6 ,7 ]
Oliva, Francesco [8 ]
Daval, Pauline [9 ]
Tortorella, Francesco [1 ]
Gargiulo, Paolo [2 ,10 ]
机构
[1] Univ Salerno, Dept Informat & Elect Engn & Appl Math, Salerno, Italy
[2] Reykjavik Univ, Inst Biomed & Neural Engn, Dept Engn, Reykjavik, Iceland
[3] Landspitali Univ Hosp, Dept Orthopaed, Reykjavik, Iceland
[4] Landspitali Univ Hosp, Dept Radiol, Reykjavik, Iceland
[5] Univ Roma La Sapienza, Univ Hosp St Andrea, Fac Med & Psychol, Dept Trauma & Orthopaed Surg, Rome, Italy
[6] Keele Univ, Fac Med & Hlth Sci, Sch Pharm & Bioengn, Stoke on Trent ST4 7QB, England
[7] Queen Mary Univ London, Mile End Hosp, Ctr Sports & Exercise Med, Barts & London Sch Med & Dent, London, England
[8] San Raffaele Roma Open Univ, Dept Human Sci & Promot Qual Life, Rome, Italy
[9] Univ Aix Marseille, Biomed Dept, Ecole Polytech, Marseille, France
[10] Landspitali Univ Hosp, Dept Sci, Reykjavik, Iceland
关键词
Magnetic resonance imaging; Superpixel; Graph convolutional network; Segmentation via node classification; Achilles tendon; IMAGES;
D O I
10.1016/j.cmpb.2024.108398
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Tendon segmentation is crucial for studying tendon-related pathologies like tendinopathy, tendinosis, etc. This step further enables detailed analysis of specific tendon regions using automated or semi-automated methods. This study specifically aims at the segmentation of Achilles tendon, the largest tendon in the human body. Methods: This study proposes a comprehensive end-to-end tendon segmentation module composed of a preliminary superpixel-based coarse segmentation preceding the final segmentation task. The final segmentation results are obtained through two distinct approaches. In the first approach, the coarsely generated superpixels are subjected to classification using Random Forest (RF) and Support Vector Machine (SVM) classifiers to classify whether each superpixel belongs to a tendon class or not (resulting in tendon segmentation). In the second approach, the arrangements of superpixels are converted to graphs instead of being treated as conventional image grids. This classification process uses a graph-based convolutional network (GCN) to determine whether each superpixel corresponds to a tendon class or not. Results: All experiments are conducted on a custom-made ankle MRI dataset. The dataset comprises 76 subjects and is divided into two sets: one for training (Dataset 1, trained and evaluated using leave-one-group- out cross-validation) and the other as unseen test data (Dataset 2). Using our first approach, the final test AUC (Area Under the ROC Curve) scores using RF and SVM classifiers on the test data (Dataset 2) are 0.992 and 0.987, respectively, with sensitivities of 0.904 and 0.966. On the other hand, using our second approach (GCN-based node classification), the AUC score for the test set is 0.933 with a sensitivity of 0.899. Conclusions: Our proposed pipeline demonstrates the efficacy of employing superpixel generation as a coarse segmentation technique for the final tendon segmentation. Whether utilizing RF, SVM-based superpixel classification, or GCN-based classification for tendon segmentation, our system consistently achieves commendable AUC scores, especially the non-graph-based approach. Given the limited dataset, our graph-based method did not perform as well as non-graph-based superpixel classifications; however, the results obtained provide valuable insights into how well the models can distinguish between tendons and non-tendons. This opens up opportunities for further exploration and improvement.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Graph convolutional network-based unsupervised learning of percolation transition
    Cha, Moon-Hyun
    Hwang, Jeongwoon
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 248
  • [32] GRANA: Graph convolutional network based network representation learning method for attributed network alignment
    Li, Yao
    Cai, He
    Liu, Huilin
    INFORMATION SCIENCES, 2025, 706
  • [33] Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning
    Song, Youyi
    Zhang, Ling
    Chen, Siping
    Ni, Dong
    Lei, Baiying
    Wang, Tianfu
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (10) : 2421 - 2433
  • [34] SGCN: A multi-order neighborhood feature fusion landform classification method based on superpixel and graph convolutional network
    Fu, Honghao
    Shen, Yilang
    Liu, Yuxuan
    Li, Jingzhong
    Zhang, Xiang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [35] Unsupervised learning for community detection in attributed networks based on graph convolutional network
    Wang, Xiaofeng
    Li, Jianhua
    Yang, Li
    Mi, Hongmei
    NEUROCOMPUTING, 2021, 456 : 147 - 155
  • [36] Deep Learning Model for Point Cloud Classification Based on Graph Convolutional Network
    Wang Xujiao
    Ma Jie
    Wang Nannan
    Ma Pengfei
    Yang Lichaung
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (21)
  • [37] GPM: A graph convolutional network based reinforcement learning framework for portfolio management
    Shi, Si
    Li, Jianjun
    Li, Guohui
    Pan, Peng
    Chen, Qi
    Sun, Qing
    NEUROCOMPUTING, 2022, 498 : 14 - 27
  • [38] 3D Point Cloud Classification and Segmentation Model Based on Graph Convolutional Network
    Hou Xiangdan
    Yu Xixin
    Liu Hongpu
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (18)
  • [39] Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning
    Dimitrios Ataloglou
    Anastasios Dimou
    Dimitrios Zarpalas
    Petros Daras
    Neuroinformatics, 2019, 17 : 563 - 582
  • [40] Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning
    Ataloglou, Dimitrios
    Dimou, Anastasios
    Zarpalas, Dimitrios
    Daras, Petros
    NEUROINFORMATICS, 2019, 17 (04) : 563 - 582