Deep Learning-Based Techniques in Glioma Brain Tumor Segmentation Using Multi-Parametric MRI: A Review on Clinical Applications and Future Outlooks

被引:1
作者
Ghadimi, Delaram J. [1 ]
Vahdani, Amir M. [2 ]
Karimi, Hanie [3 ]
Ebrahimi, Pouya [4 ]
Fathi, Mobina [1 ]
Moodi, Farzan [5 ,6 ]
Habibzadeh, Adrina [7 ]
Shoushtari, Fereshteh Khodadadi [6 ]
Valizadeh, Gelareh [6 ]
Salari, Hanieh Mobarak [6 ]
Rad, Hamidreza Saligheh [6 ,8 ]
机构
[1] Shahid Beheshti Univ Med Sci, Sch Med, Tehran, Iran
[2] Univ Tehran Med Sci, Imam Khomeini Hosp Complex, Adv Med Technol & Equipment Inst, Res Ctr Biomed Technol & Robot,Image Guided Surg L, Tehran, Iran
[3] Univ Tehran Med Sci, Sch Med, Tehran, Iran
[4] Univ Tehran Med Sci, Cardiovasc Dis Res Inst, Tehran Heart Ctr, Tehran, Iran
[5] Iran Univ Med Sci, Sch Med, Tehran, Iran
[6] Univ Tehran Med Sci, Quantitat MR Imaging & Spect Grp QMISG, Tehran, Iran
[7] Fasa Univ Med Sci, Student Res Comm, Fasa, Iran
[8] Univ Tehran Med Sci, Dept Med Phys & Biomed Engn, Tehran, Iran
关键词
glioma; deep learning; multiparametric magnetic resonance imaging; segmentation; TREATMENT RESPONSE; PSEUDOPROGRESSION; CLASSIFICATION; THERAPY;
D O I
10.1002/jmri.29543
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This comprehensive review explores the role of deep learning (DL) in glioma segmentation using multiparametric magnetic resonance imaging (MRI) data. The study surveys advanced techniques such as multiparametric MRI for capturing the complex nature of gliomas. It delves into the integration of DL with MRI, focusing on convolutional neural networks (CNNs) and their remarkable capabilities in tumor segmentation. Clinical applications of DL-based segmentation are highlighted, including treatment planning, monitoring treatment response, and distinguishing between tumor progression and pseudo-progression. Furthermore, the review examines the evolution of DL-based segmentation studies, from early CNN models to recent advancements such as attention mechanisms and transformer models. Challenges in data quality, gradient vanishing, and model interpretability are discussed. The review concludes with insights into future research directions, emphasizing the importance of addressing tumor heterogeneity, integrating genomic data, and ensuring responsible deployment of DL-driven healthcare technologies.
引用
收藏
页码:1094 / 1109
页数:16
相关论文
共 97 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging
    Abdel Razek, Ahmed Abdel Khalek
    Alksas, Ahmed
    Shehata, Mohamed
    AbdelKhalek, Amr
    Abdel Baky, Khaled
    El-Baz, Ayman
    Helmy, Eman
    [J]. INSIGHTS INTO IMAGING, 2021, 12 (01)
  • [3] Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation
    Abrigo, Jill M.
    Fountain, Daniel M.
    Provenzale, James M.
    Law, Eric K.
    Kwong, Joey S. W.
    Hart, Michael G.
    Tam, Wilson Wai San
    [J]. COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2018, (01):
  • [4] A review on brain tumor segmentation based on deep learning methods with federated learning techniques
    Ahamed, Md. Faysal
    Hossain, Md. Munawar
    Nahiduzzaman, Md.
    Islam, Md. Rabiul
    Islam, Md. Robiul
    Ahsan, Mominul
    Haider, Julfikar
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 110
  • [5] [Anonymous], 2015, arXiv, DOI [DOI 10.1109/CVPR.2016.90, 10.1109/CVPR.2016.90]
  • [6] [Anonymous], 2020, Brain Tumor Segmentation (BraTS2020)
  • [7] [Anonymous], 2015, FCE KERAS
  • [8] The Medical Segmentation Decathlon
    Antonelli, Michela
    Reinke, Annika
    Bakas, Spyridon
    Farahani, Keyvan
    Kopp-Schneider, Annette
    Landman, Bennett A.
    Litjens, Geert
    Menze, Bjoern
    Ronneberger, Olaf
    Summers, Ronald M.
    van Ginneken, Bram
    Bilello, Michel
    Bilic, Patrick
    Christ, Patrick F.
    Do, Richard K. G.
    Gollub, Marc J.
    Heckers, Stephan H.
    Huisman, Henkjan
    Jarnagin, William R.
    McHugo, Maureen K.
    Napel, Sandy
    Pernicka, Jennifer S. Golia
    Rhode, Kawal
    Tobon-Gomez, Catalina
    Vorontsov, Eugene
    Meakin, James A.
    Ourselin, Sebastien
    Wiesenfarth, Manuel
    Arbelaez, Pablo
    Bae, Byeonguk
    Chen, Sihong
    Daza, Laura
    Feng, Jianjiang
    He, Baochun
    Isensee, Fabian
    Ji, Yuanfeng
    Jia, Fucang
    Kim, Ildoo
    Maier-Hein, Klaus
    Merhof, Dorit
    Pai, Akshay
    Park, Beomhee
    Perslev, Mathias
    Rezaiifar, Ramin
    Rippel, Oliver
    Sarasua, Ignacio
    Shen, Wei
    Son, Jaemin
    Wachinger, Christian
    Wang, Liansheng
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] Bakas S., 2018, arXiv, DOI 10.17863/CAM.38755
  • [10] Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
    Bakas, Spyridon
    Akbari, Hamed
    Sotiras, Aristeidis
    Bilello, Michel
    Rozycki, Martin
    Kirby, Justin S.
    Freymann, John B.
    Farahani, Keyvan
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2017, 4