Polysaccharide base electrospun nanofibrous scaffolds for cartilage tissue engineering: Challenges and opportunities

被引:1
|
作者
Arash, Atefeh [1 ]
Dehgan, Fatemeh [1 ]
Benisi, Soheila Zamanlui [2 ,3 ]
Jafari-Nodoushan, Milad [2 ,4 ]
Pezeshki-Modaress, Mohamad [5 ,6 ,7 ]
机构
[1] Islamic Azad Univ, Fac Engn, Dept Biomed Engn, Cent Tehran Branch, Tehran, Iran
[2] Islamic Azad Univ, Dept Biomed Engn, Cent Tehran Branch, Tehran, Iran
[3] Islamic Azad Univ, Tissue Engn & Regenerat Med Inst, Stem Cells Res Ctr, Cent Tehran Branch, Tehran, Iran
[4] Islamic Azad Univ, Tissue Engn & Regenerat Med Inst, Hard Tissue Engn Res Ctr, Cent Tehran Branch, Tehran, Iran
[5] Iran Univ Med Sci, Burn Res Ctr, Tehran, Iran
[6] Iran Univ Med Sci, Sch Med, Hazrat Fatemeh Hosp, Dept Plast & Reconstruct Surg, Tehran, Iran
[7] Iran Univ Med Sci, Stem Cell & Regenerat Med Res Ctr, Tehran, Iran
关键词
Polysaccharides; Cartilage tissue engineering; Nanofibrous scaffold; Electrospinning; MARROW STROMAL CELLS; HYALURONIC-ACID; ARTICULAR-CARTILAGE; CHONDROGENIC DIFFERENTIATION; MECHANICAL-PROPERTIES; CHONDROITIN SULFATE; BONE; CELLULOSE; FABRICATION; HYDROGELS;
D O I
10.1016/j.ijbiomac.2024.134054
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polysaccharides, known as naturally abundant macromolecular materials which can be easily modified chemically, have always attracted scientists' interest due to their outstanding properties in tissue engineering. Moreover, their intrinsic similarity to cartilage ECM components, biocompatibility, and non-harsh processing conditions make polysaccharides an excellent option for cartilage tissue engineering. Imitating the natural ECM structure to form a fibrous scaffold at the nanometer scale in order to recreate the optimal environment for cartilage regeneration has always been attractive for researchers in the past few years. However, there are some challenges for polysaccharides electrospun nanofibers preparation, such as poor solubility (Alginate, cellulose, chitin), high viscosity (alginate, chitosan, and Hyaluronic acid), high surface tension, etc. Several methods are reported in the literature for facing polysaccharide electrospinning issues, such as using carrier polymers, modification of polysaccharides, and using different solvent systems. In this review, considering the importance of polysaccharide-based electrospun nanofibers in cartilage tissue engineering applications, the main achievements in the past few years, and challenges for their electrospinning process are discussed. After careful investigation of reported studies in the last few years, alginate, chitosan, hyaluronic acid, chondroitin sulfate, and cellulose were chosen as the main polysaccharide base electrospun nanofibers used for cartilage regeneration.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering
    Sadeghi, Davoud
    Karbasi, Saeed
    Razavi, Shahnaz
    Mohammadi, Sajjad
    Shokrgozar, Mohammad Ali
    Bonakdar, Shahin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (47)
  • [32] Biomimetic tissue regeneration using electrospun nanofibrous scaffolds
    Owida, H. A.
    Al-Ayyad, M.
    Rashid, M.
    JOURNAL OF OPTOELECTRONIC AND BIOMEDICAL MATERIALS, 2022, 14 (04): : 169 - 186
  • [33] Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering
    Ding, Huixiu
    Cheng, Yizhu
    Niu, Xiaolian
    Hu, Yinchun
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2020, 32 (04) : 536 - 561
  • [34] A review of key challenges of electrospun scaffolds for tissue-engineering applications
    Khorshidi, Sajedeh
    Solouk, Atefeh
    Mirzadeh, Hamid
    Mazinani, Saeedeh
    Lagaron, Jose M.
    Sharifi, Shahriar
    Ramakrishna, Seeram
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2016, 10 (09) : 715 - 738
  • [35] Polysaccharide-based materials for cartilage tissue engineering applications
    Oliveira, J. T.
    Reis, R. L.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2011, 5 (06) : 421 - 436
  • [36] Graphene oxide containing chitosan scaffolds for cartilage tissue engineering
    Shamekhi, Mohammad Amin
    Mirzadeh, Hamid
    Mahdavi, Hamid
    Rabiee, Ahmad
    Mohebbi-Kalhori, Davod
    Eslaminejad, Mohamadreza Baghaban
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 127 : 396 - 405
  • [37] Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering
    Hajiali, Hadi
    Shahgasempour, Shapour
    Naimi-Jamal, M. Reza
    Peirovi, Habibullah
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2011, 6 : 2133 - 2141
  • [38] Electrospun Nanofibrous Scaffolds: Production, Characterization, and Applications for Tissue Engineering and Drug Delivery
    Li, Wan-Ju
    Mauck, Robert L.
    Tuan, Rocky S.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2005, 1 (03) : 259 - 275
  • [39] Bone tissue engineering: Adult stem cells in combination with electrospun nanofibrous scaffolds
    Moradi, Sadegh L.
    Golchin, Ali
    Hajishafieeha, Zahra
    Khani, Mohammad-Mehdi
    Ardeshirylajimi, Abdolreza
    JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (10) : 6509 - 6522
  • [40] Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications
    Teixeira, Marta A.
    Amorim, M. Teresa P.
    Felgueiras, Helena P.
    POLYMERS, 2020, 12 (01)