A Unified Generative Adversarial Network With Convolution and Transformer for Remote Sensing Image Fusion

被引:0
|
作者
Wu, Yuanyuan [1 ,2 ]
Huang, Mengxing [1 ,3 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Guangdong Ocean Univ, Sch Elect & Informat Engn, Zhanjiang 524088, Peoples R China
[3] Hainan Univ, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Spatial resolution; Image resolution; Transformers; Generative adversarial networks; Biological system modeling; Pansharpening; Data models; Bidirectional local-global feature encoder; convolution and Transformer; multihead cross-attention fusion; multiresolution convolutional Transformer discriminators; remote sensing image (RSI) unified fusion model; SATELLITE IMAGES; LANDSAT; QUALITY; REFLECTANCE; FRAMEWORK; MODEL; MS;
D O I
10.1109/TGRS.2024.3441719
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Images derived from an individual sensor fail to simultaneously satisfy the demands of high spatial, spectral, and temporal resolutions. Multisource remote sensing image (RSI) fusion provides efficient access to high-spatial-resolution multispectral (HRMS) images [spatial-spectral fusion (SSF)] and high temporal- and spatial-resolution images [spatiotemporal fusion (STF)]. While existing deep learning (DL)-based models can mainly implement either SSF or STF, there is an urgent need for models that can simultaneously implement both SSF and STF. A unified generative adversarial network with convolution and Transformer (CTUGAN) for SSF and STF is proposed. CTUGAN contains a adaptive convolutional Transformer generator (ACTG) and multiresolution convolutional Transformer discriminator (MCTD), both with the convolution and Transformer. First, a bidirectional local-global feature encoder is devised in the ACTG to extract local-global features via a high-to-low resolution and a low-to-high resolution. Then, a multihead cross-attention fusion decoder (MCAFD) is devised to aggregate and fuse complementary local-global features of various levels and resolutions hierarchically to restore valuable information. Moreover, MCTDs adversely learn multiresolution local-global features to identify the relative reality of products, and a generalized loss function is built to accomplish full supervision. Finally, numerous experiments on the SSF data (Gaofen-2 (GF-2) and QuikBird) and STF data [Coleambally Irrigation Area (CIA) and lower Gwydir catchment (LGC)] demonstrate that the proposed CTUGAN model outperforms both subjective and objective evaluations.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Remote Sensing Image Spatiotemporal Fusion via a Generative Adversarial Network With One Prior Image Pair
    Song, Yiyao
    Zhang, Hongyan
    Huang, He
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] PSGAN: A Generative Adversarial Network for Remote Sensing Image Pan-Sharpening
    Liu, Qingjie
    Zhou, Huanyu
    Xu, Qizhi
    Liu, Xiangyu
    Wang, Yunhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10227 - 10242
  • [3] Remote Sensing Image Spatiotemporal Fusion Using a Generative Adversarial Network
    Zhang, Hongyan
    Song, Yiyao
    Han, Chang
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4273 - 4286
  • [4] Multiresolution generative adversarial networks with bidirectional adaptive-stage progressive guided fusion for remote sensing image
    Wu, Yuanyuan
    Li, Yuchun
    Huang, Mengxing
    Feng, Siling
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 2962 - 2997
  • [5] SWCGAN: Generative Adversarial Network Combining Swin Transformer and CNN for Remote Sensing Image Super-Resolution
    Tu, Jingzhi
    Mei, Gang
    Ma, Zhengjing
    Piccialli, Francesco
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5662 - 5673
  • [6] Semisupervised Remote Sensing Image Fusion Using Multiscale Conditional Generative Adversarial Network With Siamese Structure
    Jin, Xin
    Huang, Shanshan
    Jiang, Qian
    Lee, Shin-Jye
    Wu, Liwen
    Yao, Shaowen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 7066 - 7084
  • [7] Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
    Jia, Sen
    Wang, Zhihao
    Li, Qingquan
    Jia, Xiuping
    Xu, Meng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] MSFusion: Multistage for Remote Sensing Image Spatiotemporal Fusion Based on Texture Transformer and Convolutional Neural Network
    Yang, Guangqi
    Qian, Yurong
    Liu, Hui
    Tang, Bochuan
    Qi, Ranran
    Lu, Yi
    Geng, Jun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4653 - 4666
  • [9] Fusion of Hyperspectral and Panchromatic Images Using Generative Adversarial Network and Image Segmentation
    Dong, Wenqian
    Yang, Yufei
    Qu, Jiahui
    Xie, Weiying
    Li, Yunsong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Superresolution Reconstruction of Remote Sensing Image Based on Generative Adversarial Network
    Zhou, Qiaoliang
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022