Investigating interfacial segregation of 52 /Al in Al-Cu alloys: A comprehensive study using density functional theory and machine learning

被引:3
|
作者
Liu, Yu [1 ,2 ]
Zhang, Yin [3 ]
Xiao, Namin [4 ]
Li, Xingwu [4 ]
Dai, Fu-Zhi [5 ,6 ]
Chen, Mohan [1 ,2 ,6 ]
机构
[1] Peking Univ, Coll Engn, HEDPS, CAPT, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Peking Univ, Dept Mech & Engn Sci, State Key Lab Turbulence & Complex Syst, BIC ESAT,Coll Engn, Beijing 100871, Peoples R China
[4] Aero Engine Corp China, Beijing Inst Aeronaut Mat, Beijing, Peoples R China
[5] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[6] AI Sci Inst, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Al-Cu alloys; Solute segregation; First-principles calculations; Density functional theory; Correlation analysis; Machine learning; OMEGA-PHASE; 1ST-PRINCIPLES CALCULATION; ALUMINUM-ALLOY; MG; PRECIPITATION; EVOLUTION; DIAGRAMS; DESIGN; THETA;
D O I
10.1016/j.actamat.2024.120294
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solute segregation at the interface between the aluminum (Al) matrix and the 52 ( Al 2 Cu ) phase decreases the interfacial energy, impedes the coarsening of precipitates, and enhances the thermal stability of such precipitates. In this study, we employ density functional theory to systematically calculate solute segregation energies of 42 solute elements at the coherent and semi-coherent interfaces between the two phases, as well as mixing energies of these elements within the Al and Cu sublattices of the 52 phase. Using correlation analysis and machine learning methods, we establish the relationship between the solute segregation energy and 20 selected atomic descriptors. Metalloid and late transition metal elements are predicted as potential candidates for enhancing the thermal stability of Al-Cu alloys. We observe that the solute segregation energy at the interfacial site of the semi-coherent interface correlates with the atomic size of solute atoms and their solubilities within the 52 phase. The developed machine learning models exhibit the potential to predict solute segregation energies at various sites of the coherent and semi-coherent interfaces. Overall, our study provides valuable insights into the stabilizing potential of individual elements at the 52 /Al interface in Al-Cu alloys.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Transformation of the θ-phase in Mg-Li-Al alloys: a density functional theory study
    Caili Zhang
    Peide Han
    Zhuxia Zhang
    Minghui Dong
    Lili Zhang
    Xiangyang Gu
    Yanqing Yang
    Bingshe Xu
    Journal of Molecular Modeling, 2012, 18 : 1123 - 1127
  • [22] Accelerated design of Al-Zn-Mg-Cu alloys via machine learning
    Juan, Yong-fei
    Niu, Guo-shuai
    Yang, Yang
    Xu, Zi-han
    Yang, Jian
    Tang, Wen-qi
    Jiang, Hai-tao
    Han, Yan-feng
    Dai, Yong-bing
    Zhang, Jiao
    Sun, Bao-de
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2024, 34 (03) : 709 - 723
  • [23] A first-principles study of the structural, mechanical and electronic properties of precipitates of Al2Cu in Al-Cu alloys
    Ouyang, Y. F.
    Chen, H. M.
    Tao, X. M.
    Gao, F.
    Peng, Q.
    Du, Y.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (02) : 967 - 976
  • [24] Experimental and first-principles characterization of T(Al20Cu2Mn3) phase interfacial segregation behavior in Al-Cu-Mg alloys
    Li, Xianzhuo
    Chen, Xia
    Zhang, Zizheng
    Chen, Jie
    Li, Zeyu
    Chen, Bin
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [25] Coupled segregation mechanisms of Sc, Zr and Mn at θ′ interfaces enhances the strength and thermal stability of Al-Cu alloys
    Jiang, Lu
    Rouxel, Baptiste
    Langan, Timothy
    Dorin, Thomas
    ACTA MATERIALIA, 2021, 206
  • [26] Investigating the Reactivity of Single Atom Alloys Using Density Functional Theory
    Thirumalai, Hari
    Kitchin, John R.
    TOPICS IN CATALYSIS, 2018, 61 (5-6) : 462 - 474
  • [27] Investigating the Reactivity of Single Atom Alloys Using Density Functional Theory
    Hari Thirumalai
    John R. Kitchin
    Topics in Catalysis, 2018, 61 : 462 - 474
  • [28] Microstructural evolution and deformation behavior of Al-Cu alloys: A Transmission X-ray Microscopy (TXM) and micropillar compression study
    Kaira, C. Shashank
    Kantzos, Christopher
    Williams, Jason J.
    De Andrade, Vincent
    De Carlo, Francesco
    Chawla, Nikhilesh
    ACTA MATERIALIA, 2018, 144 : 419 - 431
  • [29] A Comprehensive Study of Al2O3 Mechanical Behavior Using Density Functional Theory and Molecular Dynamics
    Fathalian, Mostafa
    Postek, Eligiusz
    Tahani, Masoud
    Sadowski, Tomasz
    MOLECULES, 2024, 29 (05):
  • [30] Accelerated design of Al−Zn−Mg−Cu alloys via machine learning
    JUAN Y.-F.
    NIU G.-S.
    YANG Y.
    XU Z.-H.
    YANG J.
    TANG W.-Q.
    JIANG H.-T.
    HAN Y.-F.
    DAI Y.-B.
    ZHANG J.
    SUN B.-D.
    Transactions of Nonferrous Metals Society of China (English Edition), 2024, 34 (03): : 709 - 723