A lightweight network face detection based on YOLOv5 Lightweight model face detection based on YOLOv5 combined with Mobilenetv2

被引:0
作者
Xu, Bowen [1 ]
Wang, Chunmei [1 ]
Yu, Baocheng [1 ]
Xu, Wenxia [1 ]
Du, Bing [2 ]
机构
[1] Wuhan Inst Technol, Engn Res Ctr Intelligent Prod Line Equipment Hube, Wuhan, Peoples R China
[2] Fiberview Technol Co Ltd, Wuhan 430074, Hubei, Peoples R China
来源
2023 THE 6TH INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA 2023 | 2023年
关键词
YOLOv5; MobileNetv2; SIoU; Lightweight network; Object detection;
D O I
10.1145/3655532.3655557
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face detection is a mainstream way of human identification today, but the current object detection network requires a large number of parameters and calculations, in response to this problem, we propose a lightweight improved face detection method based on YOLOv5, which can be easily deployed in embedded devices and mobile devices. We replaced YOLOv5s backbone with a more lightweight MobileNet, replacing standard convolution with deep separable convolution; Then we also use the SIoU loss function to speed up the convergence speed of the prediction box and the target box, improving the inference rate. Compared with the baseline model, the YOLOv5-MS model reduces the number of parameters by 91.4% and increases FPS by 62.5%, which achieves a good balance between detection accuracy and rate.
引用
收藏
页码:157 / 162
页数:6
相关论文
共 15 条
  • [1] Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934, DOI 10.48550/ARXIV.2004.10934]
  • [2] Howard AG, 2017, Arxiv, DOI arXiv:1704.04861
  • [3] Gevorgyan Z, 2022, Arxiv, DOI arXiv:2205.12740
  • [4] SqueezeNext: Hardware-Aware Neural Network Design
    Gholami, Amir
    Kwon, Kiseok
    Wu, Bichen
    Tai, Zizheng
    Yue, Xiangyu
    Jin, Peter
    Zhao, Sicheng
    Keutzer, Kurt
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 1719 - 1728
  • [5] Rich feature hierarchies for accurate object detection and semantic segmentation
    Girshick, Ross
    Donahue, Jeff
    Darrell, Trevor
    Malik, Jitendra
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 580 - 587
  • [6] He KM, 2014, LECT NOTES COMPUT SC, V8691, P346, DOI [arXiv:1406.4729, 10.1007/978-3-319-10578-9_23]
  • [7] Searching for MobileNetV3
    Howard, Andrew
    Sandler, Mark
    Chu, Grace
    Chen, Liang-Chieh
    Chen, Bo
    Tan, Mingxing
    Wang, Weijun
    Zhu, Yukun
    Pang, Ruoming
    Vasudevan, Vijay
    Le, Quoc V.
    Adam, Hartwig
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1314 - 1324
  • [8] SSD: Single Shot MultiBox Detector
    Liu, Wei
    Anguelov, Dragomir
    Erhan, Dumitru
    Szegedy, Christian
    Reed, Scott
    Fu, Cheng-Yang
    Berg, Alexander C.
    [J]. COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 21 - 37
  • [9] ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    Ma, Ningning
    Zhang, Xiangyu
    Zheng, Hai-Tao
    Sun, Jian
    [J]. COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 122 - 138
  • [10] Redmon J., 2018, PREPRINT, DOI [DOI 10.48550/ARXIV.1804.02767, 10.48550/arXiv.1804.02767]