Research on Multi-Scale CNN and Transformer-Based Multi-Level Multi-Classification Method for Images

被引:1
|
作者
Gou, Quandeng [1 ]
Ren, Yuheng [2 ,3 ]
机构
[1] Neijiang Normal Univ, Informatizat Construct & Serv Ctr, Neijiang 641000, Peoples R China
[2] Xiamen Kunlu IoT Informat Technol Co Ltd, Xiamen 361021, Fujian, Peoples R China
[3] European Union Univ, Sch Business Econ, CH-1820 Montreux, Switzerland
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Task analysis; Convolution; Image classification; Convolutional neural networks; Vectors; Transformer; hierarchical characteristics of the model; multi-scale convolution; multi-level and multi-classification of images;
D O I
10.1109/ACCESS.2024.3433374
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the vigorous development of digital creativity, the image data generated by it has exploded. To effectively manage massive image data, multi-level and multi-classification management of images has become very necessary. However, the existing hierarchical classification models of deep learning images are all based on convolutional neural networks, which have limitations in capturing the underlying global features. Different from this, Transformer, as a new neural network, captures the global context information through the attention mechanism, so it performs excellently in various visual recognition tasks. However, the existing work based on Transformer does not use the hierarchical structure information in the model, making it challenging to apply the model to multi-level and multi-classification tasks of images. Therefore, this paper proposes a new image multi-level and multi-classification model, which uses multi-scale CNN to effectively capture feature information at different scales and combines it with the Transformer's ability to extract global features. At the same time, the model makes full use of the hierarchical structure information in Transformer to better understand the complex relationship of images. We have done a lot of experiments on three data sets, CIFAR-10, CIFAR-100, and CUB-200-2011, and compared the performance with the existing multi-level and multi-classification model of images. The results show that our model has higher classification accuracy and better robustness.
引用
收藏
页码:103049 / 103059
页数:11
相关论文
共 50 条
  • [1] MM-GLCM-CNN: A multi-scale and multi-level based GLCM-CNN for polyp classification
    Zhang, Shu
    Wu, Jinru
    Shi, Enze
    Yu, Sigang
    Gao, Yongfeng
    Li, Lihong Connie
    Kuo, Licheng Ryan
    Pomeroy, Marc Jason
    Liang, Zhengrong Jerome
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 108
  • [2] MULTI-SCALE, MULTI-LEVEL, HETEROGENEOUS FEATURES EXTRACTION AND CLASSIFICATION OF VOLUMETRIC MEDICAL IMAGES
    Li, Shuai
    Zhao, Qinping
    Wang, Shengfa
    Hao, Aimin
    Qin, Hong
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 1418 - 1422
  • [3] A Transformer-based method to simulate multi-scale soil moisture
    Liu, Yangxiaoyue
    Xin, Ying
    Yin, Cong
    JOURNAL OF HYDROLOGY, 2025, 655
  • [4] Multi-Scale Multi-Level Generative Model in Scene Classification
    Xie, Wenjie
    Xu, De
    Tang, Yingjun
    Cui, Geng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (01): : 167 - 170
  • [5] Coastline extraction based on multi-scale segmentation and multi-level inheritance classification
    Hui, Sheng
    Mengliang, Guo
    Yuliang, Gan
    Mingming, Xu
    Shanwei, Liu
    Yasir, Muhammad
    Jianyong, Cui
    Jianhua, Wan
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [6] StoHisNet: A hybrid multi-classification model with CNN and Transformer for gastric pathology images
    Fu, Bangkang
    Zhang, Mudan
    He, Junjie
    Cao, Ying
    Guo, Yuchen
    Wang, Rongpin
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [7] Multi-Level Layout Hotspot Detection based on Multi-Classification With Deep Learning
    Gai, Tianyang
    Qu, Tong
    Su, Xiaojing
    Wang, Shuhan
    Dong, Lisong
    Zhang, Libin
    Chen, Rui
    Su, Yajuan
    Wei, Yayi
    Ye, Tianchun
    DESIGN-PROCESS-TECHNOLOGY CO-OPTIMIZATION XV, 2021, 11614
  • [8] Multi-Level Transformer-Based Social Relation Recognition
    Wang, Yuchen
    Qing, Linbo
    Wang, Zhengyong
    Cheng, Yongqiang
    Peng, Yonghong
    SENSORS, 2022, 22 (15)
  • [9] General Framework for Multi-Classification of EEG Signals Based on Multi-Scale Properties
    Lahmiri, Salim
    2020 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2020,
  • [10] Transformer-Based Multi-Scale Feature Remote Sensing Image Classification Model
    Sun, Ting
    Li, Jun
    Zhou, Xiangrui
    Chen, Zan
    IEEE ACCESS, 2025, 13 : 34095 - 34104