Fine-Grained Urban Village Extraction by Mask Transformer From High-Resolution Satellite Images in Pearl River Delta

被引:2
|
作者
Chai, Zhuoqun [1 ]
Liu, Mengxi [1 ]
Shi, Qian [1 ]
Zhang, Yuanyuan [1 ]
Zuo, Minglin [1 ]
He, Da [1 ]
机构
[1] Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Feature extraction; Urban areas; Transformers; Training; Buildings; Rivers; Remote sensing; Deep learning; Pearl River Delta (PRD); remote sensing; urban villages (UVs); urbanization; INFORMAL SETTLEMENTS; SEMANTIC SEGMENTATION; CHINA; MIGRATION; DYNAMICS; NETWORK;
D O I
10.1109/JSTARS.2024.3434487
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Urban renewal has led to the proliferation of informal urban habitats, such as slums, shanty towns, and urban villages (UVs). As an important component of urban renewal, UVs influence urban spatial structure and land use patterns. Therefore, the fine extraction of UV is of great theoretical and practical significance. Existing UV classification techniques mostly employ machine learning and convolutional neural network based models, which struggle to perceive long-range global semantic information. In this article, based on high-resolution remote sensing images, we propose a multiscale mask transformer model for UV (MaskUV). It can extract both local texture features and global features. The multiscale mask transformer module with mask attention can aggregate different levels of pixel and object features, enhancing the model's recognition and generalization abilities. We extracted UV in seven cities in the Pearl River Delta (PRD) using MaskUV and analyzed the spatial pattern and accessibility of UV. Due to the scarcity of fine-grained UV detection datasets, we also provide a novel dataset (UVSet) containing 3415 pairs of 512 x 512 high-resolution UV images and labels, with a spatial resolution of 1 m. Comparative experiments with several UV extraction models demonstrate the effectiveness of MaskUV, achieving an F1 score of 84.39% and an IoU of 73.00% on UVSet. Besides, MaskUV achieves highly accurate detection results in seven cities in the PRD, with average F1 and IoU values of 84.41% and 72.44%, respectively.
引用
收藏
页码:13657 / 13668
页数:12
相关论文
共 50 条
  • [31] Use of Salient Features for the Design of a Multistage Framework to Extract Roads From High-Resolution Multispectral Satellite Images
    Das, Sukhendu
    Mirnalinee, T. T.
    Varghese, Koshy
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10): : 3906 - 3931
  • [32] Transformer-based semantic segmentation for large-scale building footprint extraction from very-high resolution satellite images
    Gibril, Mohamed Barakat A.
    Al-Ruzouq, Rami
    Shanableh, Abdallah
    Jena, Ratiranjan
    Bolcek, Jan
    Shafri, Helmi Zulhaidi Mohd
    Ghorbanzadeh, Omid
    ADVANCES IN SPACE RESEARCH, 2024, 73 (10) : 4937 - 4954
  • [33] HIGH-RESOLUTION FINE-GRAINED WETLAND MAPPING BASED ON CLASS-BALANCED DEEP SEMANTIC SEGMENTATION NETWORKS
    Wu, Yingxin
    Liu, Yinhe
    Shi, Sunan
    Zhong, Yanfei
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5336 - 5339
  • [34] Road Extraction from High-Resolution Orthophoto Images Using Convolutional Neural Network
    Abdollahi, Abolfazl
    Pradhan, Biswajeet
    Shukla, Nagesh
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (03) : 569 - 583
  • [35] Road Extraction from High-Resolution Orthophoto Images Using Convolutional Neural Network
    Abolfazl Abdollahi
    Biswajeet Pradhan
    Nagesh Shukla
    Journal of the Indian Society of Remote Sensing, 2021, 49 : 569 - 583
  • [36] Estimation of air pollution removal capacity by urban vegetation from very high-resolution satellite images in Lithuania
    Araminiene, Valda
    Sicard, Pierre
    Cerniauskas, Valentinas
    Coulibaly, Fatimatou
    Varnagiryte-Kabasinskiene, Iveta
    URBAN CLIMATE, 2023, 51
  • [37] UB-FineNet: Urban building fine-grained classification network for open-access satellite images
    He, Zhiyi
    Yao, Wei
    Shao, Jie
    Wang, Puzuo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 217 : 76 - 90
  • [38] Building footprint extraction from very high-resolution satellite images using deep learning
    Ps, Prakash
    Aithal, Bharath H.
    JOURNAL OF SPATIAL SCIENCE, 2023, 68 (03) : 487 - 503
  • [39] Road Extraction Based on Level Set Approach From Very High-Resolution Images With Volunteered Geographic Information
    Yang, Le
    Wang, Xing
    Zhang, Cuicui
    Zhai, Jingsheng
    IEEE ACCESS, 2020, 8 : 178587 - 178599
  • [40] Urban origins/destinations from high-resolution remote sensing images
    Wang, Hao
    Trauth, Kathleen M.
    JOURNAL OF URBAN PLANNING AND DEVELOPMENT, 2006, 132 (02) : 104 - 111