Fault Diagnosis of High-Speed Train Motors Based on a Multidimensional Belief Rule Base

被引:0
|
作者
Gao, Zhi [1 ,2 ]
He, Meixuan [3 ]
Zhang, Xinming [1 ,4 ]
Hu, Guanyu [5 ,6 ]
He, Weidong [2 ]
Chen, Siyu [2 ]
机构
[1] Changchun Univ Sci & Technol, Mech & Elect Engn Coll, Changchun 130022, Peoples R China
[2] Changchun Univ Technol, Sch Mechatron Engn, Changchun 130012, Peoples R China
[3] Changchun Univ Technol, Coll Comp Sci & Engn, Changchun 130012, Peoples R China
[4] Foshan Univ, Sch Mechatron Engn & Automat, Foshan 528001, Peoples R China
[5] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
[6] Guilin Univ Elect Technol, Sch Software Engn, Guilin 541004, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Fault diagnosis; Motors; Gears; Accuracy; Reliability; Complex systems; Data models; Rail transportation; High-speed rail transportation; Safety; Adaptation models; Complexity theory; Covariance matrices; Running gear; belief rule base; fault diagnosis; PREDICTION; MODEL; SYSTEM;
D O I
10.1109/ACCESS.2024.3452641
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The safe operation of high-speed rail running gear is crucial, as fault diagnosis can effectively prevent potential risks and ensure the smooth operation of the train. The Belief Rule Base (BRB) method has demonstrated excellent performance in complex system modeling. However, during the optimization process, BRB may lead to a "combinatorial explosion" of rules within the model, resulting in a loss of model interpretability and an increase in complexity. To address this, a Multidimensional Belief Rule Base (MBRB) fault diagnosis method is proposed. By optimizing the structure and parameters, the interpretability of the model is enhanced, and its complexity is reduced. Specifically, the model inputs are decomposed into multiple dimensions for analysis, and then the MBRB rules are updated using the Projection Covariance Matrix Adaption Evolution Strategy (P-CMA-ES), increasing the model's interpretability and accuracy. Finally, the effectiveness of this method is validated through an example of high-speed rail running gear.
引用
收藏
页码:122544 / 122556
页数:13
相关论文
共 50 条
  • [21] Research on Fault Diagnosis Method for Speed Sensor of High-Speed Train
    Lu, Jinjun
    Wu, Mengling
    Liu, Gang
    Lu, Jinjun
    Geng, Xiaofeng
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [22] Fault Diagnosis of High-speed Train Bogie Based on Deep Neural Network
    Zhang, Yuanjie
    Qin, Na
    Huang, Deqing
    Liang, Kaiwei
    IFAC PAPERSONLINE, 2019, 52 (24): : 135 - 139
  • [23] A novel combination belief rule base model for mechanical equipment fault diagnosis
    Chen, Manlin
    Zhou, Zhijie
    Zhang, Bangcheng
    Hu, Guanyu
    Cao, You
    CHINESE JOURNAL OF AERONAUTICS, 2022, 35 (05) : 158 - 178
  • [24] A New Fault Diagnosis Method Based on Belief Rule Base With Attribute Reliability Considering Multi-Fault Features
    Li, Hongyu
    Yin, Xiuxian
    He, Wei
    Feng, Zhichao
    Cao, You
    IEEE ACCESS, 2023, 11 : 92766 - 92774
  • [25] Significance Support Vector Machine for High-Speed Train Bearing Fault Diagnosis
    Sun, Bing
    Liu, Xiaofeng
    IEEE SENSORS JOURNAL, 2023, 23 (05) : 4638 - 4646
  • [26] Hybrid System Model Based Fault Diagnosis for Speed and Position System of High-speed Train
    Xiong, Feng
    Zhang, Santong
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 763 - 767
  • [27] A deep belief rule base-based fault diagnosis method for complex systems
    Zhao, BoYing
    Zhang, QingXi
    He, Wei
    Han, Peng
    Cao, You
    Zhou, GuoHui
    ISA TRANSACTIONS, 2024, 150 : 77 - 91
  • [28] A new interpretable fault diagnosis method based on belief rule base and probability table
    Zhichao MING
    Zhijie ZHOU
    You CAO
    Shuaiwen TANG
    Yuan CHEN
    Xiaoxia HAN
    Wei HE
    Chinese Journal of Aeronautics , 2023, (03) : 184 - 201
  • [29] Fault diagnosis of high-speed train wheelset bearing based on a lightweight neural network
    Deng F.-Y.
    Ding H.
    Lü H.-Y.
    Hao R.-J.
    Liu Y.-Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2021, 43 (11): : 1482 - 1490
  • [30] Bayesian Network Based Fault Diagnosis and Maintenance for High-Speed Train Control Systems
    Cheng, Yu
    Xu, Tianhua
    Yang, Lianbao
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (QR2MSE), VOLS I-IV, 2013, : 1753 - 1757