ON HYPER (r, q)-FIBONACCI POLYNOMIALS

被引:0
作者
Belbachir, Hacene [1 ]
Krim, Fariza [1 ]
机构
[1] USTHB, RECITS Lab, Fac Math, POB 32, Algiers 16111, Algeria
关键词
Fibonacci polynomials; hyper-Fibonacci polynomials; incomplete Fibonacci polynomials; generalized arithmetic triangle; golden ratio; Cassini identity; FIBONACCI; RECURRENCES; RAYS;
D O I
10.1515/ms-2024-0002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Related to generalized arithmetic triangle, we introduce the hyper (r, q)-Fibonacci polynomials as the sum of these elements along a finite ray starting from a specific point, which generalize the hyper-Fibonacci polynomials. We give generating function, recurrence relations and we show some properties whose application allows us to extend the notion of Cassini determinant and to study some ratios. Moreover, we derive a connection between these polynomials and the incomplete (r, q)-Fibonacci polynomials defined in this paper. (c) 2024 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:5 / 26
页数:22
相关论文
共 24 条
[1]   Companion sequences associated to the r-Fibonacci sequence: algebraic and combinatorial properties [J].
Abbad, Sadjia ;
Belbachir, Hacene ;
Benzaghou, Benali .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) :1095-1114
[2]  
Ahmia M, 2014, ANN MATH INFORM, V43, P3
[3]  
Bahi M., 2016, Chin. J. Math, V2016
[4]   ON THE NORMS OF r-CIRCULANT MATRICES WITH THE HYPER-FIBONACCI AND LUCAS NUMBERS [J].
Bahsi, Mustafa ;
Solak, Suleyman .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (04) :693-705
[5]  
Barry P, 2005, J INTEGER SEQ, V8
[6]  
Belbachir H., 2016, Siauliai Math. Semin., V11, P1
[7]   On Recurrences in Generalized Arithmetic Triangle [J].
Belbachir, Hacene ;
Bouyakoub, Abdelkader ;
Krim, Fariza .
MATHEMATICA SLOVACA, 2023, 73 (02) :305-334
[8]  
Belbachir H, 2014, J INTEGER SEQ, V17
[9]   Linear recurrences associated to rays in Pascal's triangle and combinatorial identities [J].
Belbachir, Hacene ;
Komatsu, Takao ;
Szalay, Laszlo .
MATHEMATICA SLOVACA, 2014, 64 (02) :287-300
[10]   Characterization of linear recurrences associated to rays in Pascal's triangle [J].
Belbachir, Hacene ;
Komatsu, Takao ;
Szalay, Laszlo .
DIOPHANTINE ANALYSIS AND RELATED FIELDS 2010, 2010, 1264 :90-+