A Deep Learning-Based Seismic Horizon Tracking Method With Uncertainty Encoding and Vertical Constraint

被引:1
|
作者
Liao, Zhiying [1 ]
Zhu, Peimin [1 ]
Zhang, Hao [1 ]
Li, Zewei [2 ]
Li, Zi'ang [1 ]
Ali, Muhammad [1 ]
机构
[1] China Univ Geosci, Sch Geophys & Geomat, Wuhan 430074, Peoples R China
[2] CNPC, BGP Inc, Geophys Res Inst, Zhuozhou 072750, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Uncertainty; Training; Deep learning; Encoding; Task analysis; Target tracking; Three-dimensional displays; horizon interpretation; uncertain label; vertical constraint; NEURAL-NETWORKS;
D O I
10.1109/TGRS.2024.3424467
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning-based seismic horizon tracking methods have been extensively researched in the past few years. However, the predicted results of previous methods are currently unstable and require additional processing to obtain reasonable interpretations, limiting their applications to field seismic data. There are two potential reasons for this: 1) the training labels may not consider the uncertainty in horizon interpretation and 2) the characteristics of the seismic data used for training may differ from those for prediction (domain shift). In addition, the previous deep learning methods are mostly based on point-by-point cost functions, which are not well-suitable for horizon tracking problems. To address these issues, we proposed a method that mimics the process of manual horizon interpretation to avoid the domain shift problem and regard horizon identification and tracking as a problem of conditional probability density estimation using deep learning. In the North Sea F3 seismic data experiments, our proposed method can predict horizons accurately and stably when we select only 1.6% of the seismic sections to create labels. Taking mean absolute error (MAE) and accuracy as evaluation indices, the MAE for single-horizon prediction is as low as 2.0 ms, and the accuracy reaches 98.1%. A surprising finding revealed by the experiments is that the predicted results could provide a perspective of underground structures, such as faults and salt domes, demonstrating the feasibility of our method in interpreting complex field seismic data.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Deep learning for seismic structural monitoring by accounting for mechanics-based model uncertainty
    Cheraghzade, Milad
    Roohi, Milad
    JOURNAL OF BUILDING ENGINEERING, 2022, 57
  • [32] A study of deep learning-based multi-horizon building energy forecasting
    Ni, Zhongjun
    Zhang, Chi
    Karlsson, Magnus
    Gong, Shaofang
    ENERGY AND BUILDINGS, 2024, 303
  • [33] Deep Learning-Based Myoelectric Potential Estimation Method for Wheelchair Operation
    Aihara, Shimpei
    Shibata, Ryusei
    Mizukami, Ryosuke
    Sakai, Takara
    Shionoya, Akira
    SENSORS, 2022, 22 (04)
  • [34] Deep Learning-Based Beam Tracking for Millimeter-Wave Communications Under Mobility
    Lim, Sun Hong
    Kim, Sunwoo
    Shim, Byonghyo
    Choi, Jun Won
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (11) : 7458 - 7469
  • [35] ResDUnet: A Deep Learning-Based Left Ventricle Segmentation Method for Echocardiography
    Amer, Alyaa
    Ye, Xujiong
    Janan, Faraz
    IEEE ACCESS, 2021, 9 : 159755 - 159763
  • [36] Deep learning-based method for sentiment analysis for patients’ drug reviews
    Al-Hadhrami S.
    Vinko T.
    Al-Hadhrami T.
    Saeed F.
    Qasem S.N.
    PeerJ Computer Science, 2024, 10
  • [37] Deep Learning-Based Standard Sign Language Discrimination
    Zhang, Menglin
    Yang, Shuying
    Zhao, Min
    IEEE ACCESS, 2023, 11 : 125822 - 125834
  • [38] Deep Learning-Based Channel Prediction With Path Extraction
    Meliha, Mehdi
    Charge, Pascal
    Wang, Yide
    Bouzid, Salah Eddine
    Henry, Christophe
    Bourny, Christophe
    Tomaz, Henrique
    Chen, Yejian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) : 891 - 895
  • [39] Deep Learning-Based Forgery Attack on Document Images
    Zhao, Lin
    Chen, Changsheng
    Huang, Jiwu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7964 - 7979
  • [40] Deep Learning-Based Object Tracking in Satellite Videos: A Comprehensive Survey With a New Dataset
    Li, Yuxuan
    Jiao, Licheng
    Huang, Zhongjian
    Zhang, Xin
    Zhang, Ruohan
    Song, Xue
    Tian, Chenxi
    Zhang, Zixiao
    Liu, Fang
    Shuyuan, Yang
    Hou, Biao
    Ma, Wenping
    Liu, Xu
    Li, Lingling
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (04) : 181 - 212