ESNet: An Efficient Framework for Superpixel Segmentation

被引:5
|
作者
Xu, Sen [1 ,2 ]
Wei, Shikui [1 ,2 ]
Ruan, Tao [3 ,4 ]
Zhao, Yao [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Beijing Key Lab Adv Informat Sci & Network Technol, Beijing 100044, Peoples R China
[3] Beijing Jiaotong Univ, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
[4] Beijing Jiaotong Univ, Frontiers Sci Ctr Smart High Speed Railway Syst, Beijing 100044, Peoples R China
关键词
Feature extraction; Generators; Image segmentation; Computer architecture; Clustering algorithms; Task analysis; Classification algorithms; Superpixel; segmentation; deep clustering;
D O I
10.1109/TCSVT.2023.3347402
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Superpixel segmentation divides an original image into mid-level regions to reduce the number of computational primitives for subsequent tasks. The two-stage approaches work better but have high computational complexity among the existing deep superpixel algorithms. In contrast, the FCN style approaches cannot extract specific image features for the superpixel task. To combine the advantages of both types of methods, we propose a carefully designed framework termed Efficient Superpixel Network (ESNet) to explicitly enhance the capability of the network to describe clustering-friendly features and simultaneously preserve the simple network structure. Concretely, two points are concerned with ESNet. First, meaningful features need to be constructed for effective superpixel clustering; hence we propose the Pyramid-gradient Superpixel Generator(PSG) to decouple the ESNet into two joint parts, i.e., the feature extractor and the superpixel generator. Second, the superpixel generator is designed in an efficient manner, which performs multi-scale sampling of input images, and can work independently by replacing the introduced feature extractor with two initial convolutional layers. Extensive experiments show that our framework achieves state-of-the-art performances on multi-datasets and is 5.3x smaller on inference than the best existing one-stage FCN-based methods.
引用
收藏
页码:5389 / 5399
页数:11
相关论文
共 50 条
  • [11] Superpixel Segmentation Based on Spatially Constrained Subspace Clustering
    Li, Hua
    Jia, Yuheng
    Cong, Runmin
    Wu, Wenhui
    Kwong, Sam Tak Wu
    Chen, Chuanbo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (11) : 7501 - 7512
  • [12] Adaptive Nonlocal Random Walks for Image Superpixel Segmentation
    Wang, Hui
    Shen, Jianbing
    Yin, Junbo
    Dong, Xingping
    Sun, Hanqiu
    Shao, Ling
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (03) : 822 - 834
  • [13] A Two-Stage Gradient Ascent-Based Superpixel Framework for Adaptive Segmentation
    He, Wangpeng
    Li, Cheng
    Guo, Yanzong
    Wei, Zhifei
    Guo, Baolong
    APPLIED SCIENCES-BASEL, 2019, 9 (12):
  • [14] Superpixel Guided Network for Weakly Supervised Semantic Segmentation
    Xie, Zhaozhi
    Jiang, Weihao
    Yang, Yuwen
    Lu, Hongtao
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2885 - 2889
  • [15] autoSMIM: Automatic Superpixel-Based Masked Image Modeling for Skin Lesion Segmentation
    Wang, Zhonghua
    Lyu, Junyan
    Tang, Xiaoying
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (12) : 3501 - 3511
  • [16] Content-Adaptive Superpixel Segmentation
    Xiao, Xiaolin
    Zhou, Yicong
    Gong, Yue-Jiao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2883 - 2896
  • [17] Image Segmentation by Bilayer Superpixel Grouping
    Yang, Michael Ying
    2013 SECOND IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR 2013), 2013, : 552 - 556
  • [18] Superpixel segmentation based on image density
    Qiu, Dong-Fang
    Yang, Hua
    Deng, Xue-Feng
    Liu, Yan-Hong
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2023, 11 (01)
  • [19] A Survey on Superpixel Segmentation as a Preprocessing Step in Hyperspectral Image Analysis
    Subudhi, Subhashree
    Patro, Ram Narayan
    Biswal, Pradyut Kumar
    Dell'Acqua, Fabio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5015 - 5035
  • [20] An Interactive Segmentation Method Based on Superpixel
    Yang, Shu
    Zhu, Yaping
    Wu, Xiaoyu
    INTERNATIONAL CONFERENCE ON ENGINEERING TECHNOLOGY AND APPLICATION (ICETA 2015), 2015, 22