Condition Monitoring of Wind Turbine Anemometers Based on Combined Model Deep Learning

被引:0
作者
Zhu, Anfeng [1 ]
Zhao, Qiancheng [1 ]
Yang, Tianlong [1 ]
Zhou, Ling [1 ]
机构
[1] Hunan Univ Sci & Technol, Engn Res Ctr Hunan Prov Min & Utilizat Wind Turbi, Xiangtan 411201, Peoples R China
来源
ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2023 | 2024年 / 1998卷
基金
中国国家自然科学基金;
关键词
Wind turbine; Anemometer; Deep learning networks; Condition monitoring; STRATEGIES;
D O I
10.1007/978-981-99-9109-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The dynamic working environment brings challenges to the condition monitoring of anemometers. To accurately grasp the actual performance status of wind turbines (WTs) and timely detect anemometer faults, a combination of Particle Swarm Optimization (PSO) and the long and short term memory network (LSTM) based anemometer status monitoring method is proposed. Firstly, utilizing the wind speed data collected by the anemometer as an input variable, select the wind turbine (WT) with high similarity through similarity analysis. Then, use the PSO to enhance the structural parameters of the LSTM network to acquire efficient anemometer state estimation. This method can monitor the abnormal state of the anemometer and reconstruct the faulty wind speed data. Finally, to demonstrate the efficiency of the approach, the condition of the WT anemometer is predicted using examples.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 17 条
  • [1] Review of performance optimization techniques applied to wind turbines
    Chehouri, Adam
    Younes, Rafic
    Ilinca, Adrian
    Perron, Jean
    [J]. APPLIED ENERGY, 2015, 142 : 361 - 388
  • [2] Fang L., 2014, Instrum. Technol., V2, P52
  • [3] Partial Feature Selection and Alignment for Multi-Source Domain Adaptation
    Fu, Yangye
    Zhang, Ming
    Xu, Xing
    Cao, Zuo
    Ma, Chao
    Ji, Yanli
    Zuo, Kai
    Lu, Huimin
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16649 - 16658
  • [4] A hybrid wind speed forecasting model using stacked autoencoder and LSTM
    Jaseena, K. U.
    Kovoor, Binsu C.
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2020, 12 (02)
  • [5] Discrete-Time Predictive Sliding Mode Control for a Constrained Parallel Micropositioning Piezostage
    Kang, Shengzheng
    Wu, Hongtao
    Yang, Xiaolong
    Li, Yao
    Yao, Jiafeng
    Chen, Bai
    Lu, Huimin
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (05): : 3025 - 3036
  • [6] Reactive power control strategies for DFIG-based plants
    Kayikci, Mustafa
    Milanovic, Jovica V.
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22 (02) : 389 - 396
  • [7] Data processing strategies in wind energy forecasting models and applications: A comprehensive review
    Liu, Hui
    Chen, Chao
    [J]. APPLIED ENERGY, 2019, 249 : 392 - 408
  • [8] Data driven sensor and actuator fault detection and isolation in wind turbine using classifier fusion
    Pashazadeh, Vahid
    Salmasi, Farzad R.
    Araabi, Babak N.
    [J]. RENEWABLE ENERGY, 2018, 116 : 99 - 106
  • [9] In-service testing of wind turbine towers using a microwave sensor
    Pieraccini, Massimiliano
    Parrini, Filippo
    Fratini, Matteo
    Atzeni, Carlo
    Spinelli, Paolo
    [J]. RENEWABLE ENERGY, 2008, 33 (01) : 13 - 21
  • [10] A hybrid genetic algorithm (GA)–particle swarm optimization (PSO) algorithm for demand side management in smart grid considering wind power for cost optimization
    Roy C.
    Das D.K.
    [J]. Sādhanā, 2021, 46 (2)