NO2-Sensitive SnO2 Nanoparticles Prepared Using a Freeze-Drying Method

被引:1
|
作者
Liu, Lin [1 ,2 ]
Zhao, Jinbo [3 ]
Jin, Zhidong [1 ,2 ]
Liu, Fei [1 ,2 ]
Zhao, Dewen [1 ,2 ]
Liu, Zhengyang [4 ]
Wang, Fenglong [1 ,2 ]
Wang, Zhou [1 ,2 ]
Liu, Jiurong [1 ,2 ]
Wu, Lili [1 ,2 ]
机构
[1] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[2] Shandong Univ, Sch Mat Sci & Engn, Jinan 250061, Peoples R China
[3] Qilu Univ Technol, Shandong Acad Sci, Sch Mat Sci & Engn, Jinan 250353, Peoples R China
[4] Shandong Univ Technol, Sch Mech Engn, Zibo 255000, Peoples R China
关键词
SnO2; freeze-drying methods; electrical properties; NO2; sensors; METHANE SENSING PROPERTIES; ROOM-TEMPERATURE; AIR-QUALITY; CO; SENSOR; NANOSTRUCTURES; MICROSPHERES;
D O I
10.3390/ma17153714
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The n-type semiconductor SnO2 with a wide band gap (3.6 eV) is massively used in gas-sensitive materials, but pure SnO2 still suffers from a high operating temperature, low response, and tardy responding speed. To solve these problems, we prepared small-sized pure SnO2 using hydrothermal and freeze-drying methods (SnO2-FD) and compared it with SnO2 prepared using a normal drying method (SnO2-AD). The sensor of SnO2-FD had an ultra-high sensitivity to NO2 at 100 degrees C with excellent selectivity and humidity stability. The outstanding gas sensing properties are attributed to the modulation of energy band structure and the increased carrier concentration, making it more accessible for electron exchange with NO2. The excellent gas sensing properties of SnO2-FD indicate its tremendous potential as a NO2 sensor.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Freeze-drying synthesis and optical properties of nanocrystalline ZnO/SnO2 composites
    Yang, Hijaming
    Nie, Sha
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2008, 10 (01): : 197 - 200
  • [2] Freeze-drying synthesis and optical properties of nanocrystalline ZnO/SnO2 composites
    Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083, China
    J. Optoelectron. Adv. Mat., 2008, 1 (197-200):
  • [3] Synthesis of porous Cu–Sn using freeze-drying process of CuO–SnO2/camphene slurries
    Sung-Tag Oh
    Wonsuk Lee
    Si Young Chang
    Myung-Jin Suk
    Research on Chemical Intermediates, 2014, 40 : 2495 - 2500
  • [4] CO gas-sensing characteristics of SnO2 ceramics obtained by chemical precipitation and freeze-drying
    Dos Santos, O
    Weiller, ML
    Junior, DQ
    Medina, AN
    SENSORS AND ACTUATORS B-CHEMICAL, 2001, 75 (1-2) : 83 - 87
  • [5] SnO2 nanoparticles prepared by mechanochemical processing
    Cukrov, LM
    Tsuzuki, T
    McCormick, PG
    SCRIPTA MATERIALIA, 2001, 44 (8-9) : 1787 - 1790
  • [6] Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method
    Rashad, Mohamed M.
    Ismail, Adel A.
    Osama, I.
    Ibrahim, I. A.
    Kandil, Abdel-Hakim T.
    ARABIAN JOURNAL OF CHEMISTRY, 2014, 7 (01) : 71 - 77
  • [7] Production of sensitive gas sensors using CuO/SnO2 nanoparticles
    Ahmad I. Ayesh
    Aldana A. Alyafei
    Rameen S. Anjum
    Radwa M. Mohamed
    Mai B. Abuharb
    Belal Salah
    Maitha El-Muraikhi
    Applied Physics A, 2019, 125
  • [8] Production of sensitive gas sensors using CuO/SnO2 nanoparticles
    Ayesh, Ahmad I.
    Alyafei, Aldana A.
    Anjum, Rameen S.
    Mohamed, Radwa M.
    Abuharb, Mai B.
    Salah, Belal
    El-Muraikhi, Maitha
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (08):
  • [9] Annealing Effect of SnO2 Nanoparticles Prepared by the Sol-Gel Method
    Rasheed, Rashed T.
    Al-Algawi, Sariya D.
    JOURNAL OF ADVANCED PHYSICS, 2016, 5 (03) : 236 - 240
  • [10] Textural, structural and electrical properties of SnO2 nanoparticles prepared by the polyol method
    Wissem Ben Soltan
    Mourad Mbarki
    Salah Ammar
    Odile Babot
    Thierry Toupance
    Journal of Materials Science: Materials in Electronics, 2015, 26 : 1612 - 1618