Single-pixel-based hyperspectral microscopy

被引:0
|
作者
Uguen, Lisa [1 ]
Piedevache, Ronan [1 ]
Russias, Gaspard [1 ]
Helmer, Sofian [1 ]
Tregoat, Denis [1 ]
Perrin, Stephane [1 ]
机构
[1] Photon Bretagne, Biophoton Grp, 4 Rue Louis Broglie, F-22300 Lannion, France
关键词
PHOTOSYNTHESIS; PRINCIPLES;
D O I
10.1063/5.0214770
中图分类号
O59 [应用物理学];
学科分类号
摘要
Hyperspectral imaging allows to collect both spatial and quasi-continuous spectral information of an object. This work shows the innovative combination of single-pixel microscopy with hyperspectral imaging. An affordable hyperspectral microscope is able to observe micrometer-scale features of inorganic and biological samples and to reconstruct their spectral distribution with a high accuracy (i.e., a spatial and a spectral resolution of 9.0 mu m and of 2.1 nm in the visible range, respectively). Furthermore, a statistical algorithm enables the identification of spectral responses of the targeted features as well as their classification.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Hyperspectral imaging using the single-pixel Fourier transform technique
    Senlin Jin
    Wangwei Hui
    Yunlong Wang
    Kaicheng Huang
    Qiushuai Shi
    Cuifeng Ying
    Dongqi Liu
    Qing Ye
    Wenyuan Zhou
    Jianguo Tian
    Scientific Reports, 7
  • [32] Recursive Spectral Band Reconstruction from Single Pixel Hyperspectral Measurements
    Bacca, Jorge
    Cordoba, Alejandro
    Arguello, Henry
    2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2019,
  • [33] Photon-counting-based diffraction phase microscopy combined with single-pixel imaging
    Shibuya, Kyuki
    Araki, Hiroyuki
    Iwata, Tetsuo
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (04)
  • [34] Resolution-Enhanced Single-Pixel Fluorescence Microscopy
    Ordonez, L.
    Lenz, A. J. M.
    Yoneda, N.
    Kumar, M.
    Lancis, J.
    Matoba, O.
    Tajahuerce, E.
    UNCONVENTIONAL OPTICAL IMAGING IV, 2024, 12996
  • [35] CNN based sub-pixel mapping for hyperspectral images
    Arun, P. V.
    Buddhiraju, K. M.
    Porwal, A.
    NEUROCOMPUTING, 2018, 311 : 51 - 64
  • [36] A hyperspectral anomaly detector based on partitioning pixel into adjacent components
    Lo, Edisanter
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIX, 2013, 8743
  • [37] High compression deep learning based single-pixel hyperspectral macroscopic fluorescence lifetime imaging in vivo
    Ochoa, M.
    Rudkouskaya, A.
    Yao, R.
    Yan, P.
    Barroso, M.
    Intes, X.
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (10): : 5401 - 5424
  • [38] High compression deep learning based single-pixel hyperspectral macroscopic fluorescence lifetime imaging in vivo
    Ochoa M.
    Rudkouskaya A.
    Yao R.
    Yan P.
    Barroso M.
    Intes A.X.
    Biomedical Optics Express, 2021, 11 (10) : 5401 - 5424
  • [39] Virtual H&E staining with single channel reflectance confocal microscopy images using pixel to pixel based deep learning
    Chen, Mengkun
    Fox, Matthew C.
    Reichenberg, Jason S.
    Lopes, Fabiana C. P. S.
    Sebastian, Katherine R.
    Markey, Mia K.
    Tunnell, James W.
    ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC AND SURGICAL GUIDANCE SYSTEMS XXII, 2024, 12831
  • [40] Single-pixel imaging by Hadamard transform and its application for hyperspectral imaging
    Mizutani, Yasuhiro
    Shibuya, Kyuki
    Taguchi, Hiroki
    Iwata, Tetsuo
    Takaya, Yasuhiro
    Yasui, Takeshi
    OPTICAL DESIGN AND TESTING VII, 2016, 10021