FruitSeg30_Segmentation dataset & mask annotations: A novel dataset for diverse fruit segmentation and classification

被引:0
|
作者
Shamrat, F. M. Javed Mehedi [1 ]
Shakil, Rashiduzzaman [2 ]
Idris, Mohd Yamani Idna [1 ]
Akter, Bonna [2 ]
Zhou, Xujuan [3 ]
机构
[1] Univ Malaya, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia
[2] Daffodil Int Univ, Dept Comp Sci & Engn, Daffodil Smart City DSC, Dhaka 1216, Bangladesh
[3] Univ Southern Queensland, Sch Business, Springfield, Australia
来源
DATA IN BRIEF | 2024年 / 56卷
关键词
Fruit segmentation; Deep learning; Image classification; Dataset diversity; Data annotation; Computer vision; Fruit image; Agriculture automation;
D O I
10.1016/j.dib.2024.110821
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fruits are mature ovaries of flowering plants that are integral to human diets, providing essential nutrients such as vitamins, minerals, fiber and antioxidants that are crucial for health and disease prevention. Accurate classification and segmentation of fruits are crucial in the agricultural sector for enhancing the efficiency of sorting and quality control processes, which significantly benefit automated systems by reducing labor costs and improving product consistency. This paper introduces the "FruitSeg30_Segmentation Dataset & Mask Annotations", a novel dataset designed to advance the capability of deep learning models in fruit segmentation and classification. Comprising 1969 high-quality images across 30 distinct fruit classes, this dataset provides diverse visuals essential for a robust model. Utilizing a U-Net architecture, the model trained on this dataset achieved training accuracy of 94.72 %, validation accuracy of 92.57 %, precision of 94 %, recall of 91 %, f1-score of 92.5 %, IoU score of 86 %, and maximum dice score of 0.9472, demonstrating superior performance in segmentation tasks. The FruitSeg30 dataset fills a critical gap and sets new standards in dataset quality and diversity, enhancing agricultural technology and food industry applications. (c) 2024 The Authors. Published by Elsevier Inc.
引用
收藏
页数:15
相关论文
共 25 条
  • [1] DOS Dataset: A Novel Indoor Deformable Object Segmentation Dataset for Sweeping Robots
    Tan, Zehan
    Yang, Weidong
    Zhang, Zhiwei
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 352 - 366
  • [2] A novel dataset of guava fruit for grading and classification
    Maitlo, Abdul Khalique
    Aziz, Abdul
    Raza, Hassnian
    Abbas, Neelam
    DATA IN BRIEF, 2023, 49
  • [3] A novel dataset of date fruit for inspection and classification
    Maitlo, Abdul Khalique
    Shaikh, Riaz Ahmed
    Arain, Rafaqat Hussain
    DATA IN BRIEF, 2024, 52
  • [4] Urban street tree dataset for image classification and instance segmentation
    Yang, Tingting
    Zhou, Suyin
    Huang, Zhijie
    Xu, Aijun
    Ye, Junhua
    Yin, Jianxin
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 209
  • [5] A modified U-net-based architecture for segmentation of satellite images on a novel dataset
    Maurya, Abhishek
    Akashdeep
    Mittal, Payal
    Kumar, Rohit
    ECOLOGICAL INFORMATICS, 2023, 75
  • [6] NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer
    Amgad, Mohamed
    Atteya, Lamees A.
    Hussein, Hagar
    Mohammed, Kareem Hosny
    Hafiz, Ehab
    Elsebaie, Maha A. T.
    Alhusseiny, Ahmed M.
    AlMoslemany, Mohamed Atef
    Elmatboly, Abdelmagid M.
    Pappalardo, Philip A.
    Sakr, Rokia Adel
    Mobadersany, Pooya
    Rachid, Ahmad
    Saad, Anas M.
    Alkashash, Ahmad M.
    Ruhban, Inas A.
    Alrefai, Anas
    Elgazar, Nada M.
    Abdulkarim, Ali
    Farag, Abo-Alela
    Etman, Amira
    Elsaeed, Ahmed G.
    Alagha, Yahya
    Amer, Yomna A.
    Raslan, Ahmed M.
    Nadim, Menatalla K.
    Elsebaie, Mai A. T.
    Ayad, Ahmed
    Hanna, Liza E.
    Gadallah, Ahmed
    Elkady, Mohamed
    Drumheller, Bradley
    Jaye, David
    Manthey, David
    Gutman, David A.
    Elfandy, Habiba
    Cooper, Lee A. D.
    GIGASCIENCE, 2022, 11
  • [7] BreastDM: A DCE-MRI dataset for breast tumor image segmentation and classification
    Zhao, Xiaoming
    Liao, Yuehui
    Xie, Jiahao
    He, Xiaxia
    Zhang, Shiqing
    Wang, Guoyu
    Fang, Jiangxiong
    Lu, Hongsheng
    Yu, Jun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [8] NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer
    Amgad, Mohamed
    Atteya, Lamees A.
    Hussein, Hagar
    Mohammed, Kareem Hosny
    Hafiz, Ehab
    Elsebaie, Maha A. T.
    Alhusseiny, Ahmed M.
    AlMoslemany, Mohamed Atef
    Elmatboly, Abdelmagid M.
    Pappalardo, Philip A.
    Sakr, Rokia Adel
    Mobadersany, Pooya
    Rachid, Ahmad
    Saad, Anas M.
    Alkashash, Ahmad M.
    Ruhban, Inas A.
    Alrefai, Anas
    Elgazar, Nada M.
    Abdulkarim, Ali
    Farag, Abo-Alela
    Etman, Amira
    Elsaeed, Ahmed G.
    Alagha, Yahya
    Amer, Yomna A.
    Raslan, Ahmed M.
    Nadim, Menatalla K.
    Elsebaie, Mai A. T.
    Ayad, Ahmed
    Hanna, Liza E.
    Gadallah, Ahmed
    Elkady, Mohamed
    Drumheller, Bradley
    Jaye, David
    Manthey, David
    Gutman, David A.
    Elfandy, Habiba
    Cooper, Lee A. D.
    GIGASCIENCE, 2022, 11
  • [9] NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer
    Amgad, Mohamed
    Atteya, Lamees A.
    Hussein, Hagar
    Mohammed, Kareem Hosny
    Hafiz, Ehab
    Elsebaie, Maha A. T.
    Alhusseiny, Ahmed M.
    AlMoslemany, Mohamed Atef
    Elmatboly, Abdelmagid M.
    Pappalardo, Philip A.
    Sakr, Rokia Adel
    Mobadersany, Pooya
    Rachid, Ahmad
    Saad, Anas M.
    Alkashash, Ahmad M.
    Ruhban, Inas A.
    Alrefai, Anas
    Elgazar, Nada M.
    Abdulkarim, Ali
    Farag, Abo-Alela
    Etman, Amira
    Elsaeed, Ahmed G.
    Alagha, Yahya
    Amer, Yomna A.
    Raslan, Ahmed M.
    Nadim, Menatalla K.
    Elsebaie, Mai A. T.
    Ayad, Ahmed
    Hanna, Liza E.
    Gadallah, Ahmed
    Elkady, Mohamed
    Drumheller, Bradley
    Jaye, David
    Manthey, David
    Gutman, David A.
    Elfandy, Habiba
    Cooper, Lee A. D.
    GIGASCIENCE, 2022, 11
  • [10] CVRP: A rice image dataset with high-quality annotations for image segmentation and plant phenomics research
    Tang, Zhiyan
    Sun, Jiandong
    Tian, Yunlu
    Xu, Jiexiong
    Zhao, Weikun
    Jiang, Gang
    Deng, Jiaqi
    Gan, Xiangchao
    PLANT PHENOMICS, 2025, 7 (01):