MUSTER: A Multi-Scale Transformer-Based Decoder for Semantic Segmentation

被引:0
|
作者
Xu, Jing [1 ]
Shi, Wentao [1 ]
Gao, Pan [1 ]
Li, Qizhu [2 ]
Wang, Zhengwei [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
[2] TikTok Pte Ltd, Singapore 048583, Singapore
[3] ByteDance, Shanghai 201103, Peoples R China
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2025年 / 9卷 / 01期
关键词
Transformers; Decoding; Semantic segmentation; Head; Convolutional neural networks; Semantics; Computer architecture; transformer; decoder; lightweight; feature fusion; IMAGE SEGMENTATION;
D O I
10.1109/TETCI.2024.3449911
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent works on semantic segmentation, there has been a significant focus on designing and integrating transformer-based encoders. However, less attention has been given to transformer-based decoders. We emphasize that the decoder stage is equally vital as the encoder in achieving superior segmentation performance. It disentangles and refines high-level cues, enabling precise object boundary delineation at the pixel level. In this paper, we introduce a novel transformer-based decoder called MUSTER, which seamlessly integrates with hierarchical encoders and consistently delivers high-quality segmentation results, regardless of the encoder architecture. Furthermore, we present a variant of MUSTER that reduces FLOPS while maintaining performance. MUSTER incorporates carefully designed multi-head skip attention (MSKA) units and introduces innovative upsampling operations. The MSKA units enable the fusion of multi-scale features from the encoder and decoder, facilitating comprehensive information integration. The upsampling operation leverages encoder features to enhance object localization and surpasses traditional upsampling methods, improving mIoU (mean Intersection over Union) by 0.4% to 3.2%. On the challenging ADE20K dataset, our best model achieves a single-scale mIoU of 50.23 and a multi-scale mIoU of 51.88, which is on-par with the current state-of-the-art model. Remarkably, we achieve this while significantly reducing the number of FLOPs by 61.3%.
引用
收藏
页码:202 / 212
页数:11
相关论文
共 50 条
  • [1] EMSFomer: Efficient Multi-Scale Transformer for Real-Time Semantic Segmentation
    Xia, Zhengyu
    Kim, Joohee
    IEEE ACCESS, 2025, 13 : 18239 - 18252
  • [2] TMA-Net: A Transformer-Based Multi-Scale Attention Network for Surgical Instrument Segmentation
    Yang, Lei
    Wang, Hongyong
    Gu, Yuge
    Bian, Guibin
    Liu, Yanhong
    Yu, Hongnian
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2023, 5 (02): : 323 - 334
  • [3] Boundary-Guided Lightweight Semantic Segmentation With Multi-Scale Semantic Context
    Zhou, Quan
    Wang, Linjie
    Gao, Guangwei
    Kang, Bin
    Ou, Weihua
    Lu, Huimin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7887 - 7900
  • [4] MSEDTNet: Multi-Scale Encoder and Decoder with Transformer for Bladder Tumor Segmentation
    Wang, Yixing
    Ye, Xiufen
    ELECTRONICS, 2022, 11 (20)
  • [5] Papillary Thyroid Carcinoma Semantic Segmentation Using Multi-Scale Adaptive Convolutional Network With Dual Decoders
    Payatsuporn, Thanat
    Kantavat, Pittipol
    Tangnuntachai, Nichthida
    Tipparawong, Nopporn
    Techapapa, Waratchanok
    Kijsirikul, Boonserm
    Keelawat, Somboon
    IEEE ACCESS, 2025, 13 : 17340 - 17353
  • [6] LTUNet: A Lightweight Transformer-Based UNet with Multi-scale Mechanism for Skin Lesion Segmentation
    Guo, Huike
    Zhang, Han
    Li, Minghe
    Quan, Xiongwen
    ARTIFICIAL INTELLIGENCE, CICAI 2023, PT II, 2024, 14474 : 147 - 158
  • [7] Evaluating Transformer-based Semantic Segmentation Networks for Pathological Image Segmentation
    Cam Nguyen
    Asad, Zuhayr
    Deng, Ruining
    Huo, Yuankai
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [8] Mix-layers semantic extraction and multi-scale aggregation transformer for semantic segmentation
    Li, Tianping
    Yang, Xiaolong
    Zhang, Zhenyi
    Cui, Zhaotong
    Maoxia, Zhou
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [9] PMED-Net: Pyramid Based Multi-Scale Encoder-Decoder Network for Medical Image Segmentation
    Khan, Abbas
    Kim, Hyongsuk
    Chua, Leon
    IEEE ACCESS, 2021, 9 : 55988 - 55998
  • [10] Transformer-based Multi-scale Underwater Image Enhancement Network
    Yang, Ai-Ping
    Fang, Si-Jie
    Shao, Ming-Fu
    Zhang, Teng-Fei
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (12): : 1696 - 1705