Landslide Analysis with Incomplete Data: A Framework for Critical Parameter Estimation

被引:1
|
作者
Guido, Lauren [1 ]
Santi, Paul [1 ]
机构
[1] Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA
来源
GEOTECHNICS | 2024年 / 4卷 / 03期
关键词
landslide; parameter estimation; uncertainty; DIGITAL ELEVATION MODEL; STRENGTH PARAMETERS; REGOLITH THICKNESS; VERTICAL ACCURACY; RESIDUAL STRENGTH; SHALLOW; SUSCEPTIBILITY; RESOLUTION; TABLE; ROCK;
D O I
10.3390/geotechnics4030047
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Landslides are one of the most common geohazards, posing significant risks to infrastructure, recreation, and human life. Slope stability analyses rely on detailed data, accurate materials testing, and careful model parameter selection. These factors are not always readily available, and estimations must be made, introducing uncertainty and error to the final slope stability analysis results. The most critical slope stability parameters that are often missing or incompletely constrained include slope topography, depth to water table, depth to failure plane, and material property parameters. Though estimation of these values is common practice, there is limited guidance or best practice instruction for this important step in the analysis. Guidance is provided for the estimation of: original and/or post-failure slope topography via traditional methods as well as the use of open-source digital elevation models, water table depth across variable hydrologic settings, and the iterative estimation of depth to failure plane and slope material properties. Workflows are proposed for the systematic estimation of critical parameters based primarily on slide type and scale. The efficacy of the proposed estimation techniques, uncertainty quantification, and final parameter estimation protocol for data-sparse landslide analysis is demonstrated via application at a landslide in Colorado, USA.
引用
收藏
页码:918 / 951
页数:34
相关论文
共 50 条
  • [31] Performance Analysis of Parameter Estimation in Electromagnetic Induction Data
    Kerr, Andrew J.
    Scott, Waymond R., Jr.
    McClellan, James H.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 5054 - 5066
  • [32] Impact of Incomplete and Inaccurate Data Models on High Resolution Parameter Estimation in Multidimensional Channel Sounding
    Landmann, Markus
    Kaeske, Martin
    Thomae, Reiner S.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (02) : 557 - 573
  • [33] Off-Grid Parameter Estimation for OFDM-based ISAC Systems with Incomplete Data
    Ling, Muyao
    Feng, Xinxin
    Zheng, Haifeng
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [34] Data Analysis and Parameter Estimation in the Field of the Automotive Claims
    Danila, A.
    Tobos, T.
    PROCEEDINGS OF 2010 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS (AQTR 2010), VOLS. 1-3, 2010,
  • [35] Discriminant analysis for compositional data and robust parameter estimation
    Peter Filzmoser
    Karel Hron
    Matthias Templ
    Computational Statistics, 2012, 27 : 585 - 604
  • [36] Instrumentation analysis using parameter estimation of simulated data
    Thomas, JW
    Hall, CE
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1996, 19 (05) : 1191 - 1193
  • [37] Discriminant analysis for compositional data and robust parameter estimation
    Filzmoser, Peter
    Hron, Karel
    Templ, Matthias
    COMPUTATIONAL STATISTICS, 2012, 27 (04) : 585 - 604
  • [38] Parameter estimation in bayesian networks from incomplete databases
    Knowledge Media Institute, Open University, Milton Kynes, United Kingdom
    不详
    Intelligent Data Analysis, 1998, 2 (02): : 139 - 160
  • [39] Parameter Estimation in Credit Models Under Incomplete Information
    Herbertsson, Alexander
    Frey, Ruediger
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (07) : 1409 - 1436
  • [40] PARAMETER ESTIMATION IN CASE OF INCOMPLETE FRAMES USINGDOUBLE SAMPLING
    Yadav, Shilpa
    Nagar, Pankaj
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2024, 20 (02): : 527 - 534