Diffusion distribution model for damage mitigation in scanning transmission electron microscopy

被引:1
|
作者
Moshtaghpour, Amirafshar [1 ,2 ]
Velazco-Torrejon, Abner [1 ]
Nicholls, Daniel [2 ]
Robinson, Alex W. [2 ]
Kirkland, Angus I. [1 ,3 ]
Browning, Nigel D. [2 ]
机构
[1] Rosalind Franklin Inst, Correlated Imaging Theme, Harwell Sci & Innovat Campus, Didcot OX11 0QS, England
[2] Univ Liverpool, Dept Mech Mat & Aerosp Engn, Liverpool, England
[3] Univ Oxford, Dept Mat, Oxford, England
基金
英国科研创新办公室; 英国工程与自然科学研究理事会;
关键词
beam damage; compressive sensing; diffusion distribution; scanning transmission electron microscopy; RADIATION-DAMAGE; RESOLUTION; STEM;
D O I
10.1111/jmi.13351
中图分类号
TH742 [显微镜];
学科分类号
摘要
Despite the widespread use of Scanning Transmission Electron Microscopy (STEM) for observing the structure of materials at the atomic scale, a detailed understanding of some relevant electron beam damage mechanisms is limited. Recent reports suggest that certain types of damage can be modelled as a diffusion process and that the accumulation effects of this process must be kept low in order to reduce damage. We therefore develop an explicit mathematical formulation of spatiotemporal diffusion processes in STEM that take into account both instrument and sample parameters. Furthermore, our framework can aid the design of Diffusion Controlled Sampling (DCS) strategies using optimally selected probe positions in STEM, that constrain the cumulative diffusion distribution. Numerical simulations highlight the variability of the cumulative diffusion distribution for different experimental STEM configurations. These analytical and numerical frameworks can subsequently be used for careful design of 2- and 4-dimensional STEM experiments where beam damage is minimised.
引用
收藏
页码:57 / 77
页数:21
相关论文
共 50 条
  • [21] Image potential in scanning transmission electron microscopy
    Rivacoba, A
    Zabala, N
    Aizpurua, J
    PROGRESS IN SURFACE SCIENCE, 2000, 65 (1-2) : 1 - 64
  • [22] Atmospheric Pressure Scanning Transmission Electron Microscopy
    de Jonge, Niels
    Bigelow, Wilbur C.
    Veith, Gabriel M.
    NANO LETTERS, 2010, 10 (03) : 1028 - 1031
  • [23] New views of materials through aberration-corrected scanning transmission electron microscopy
    Pennycook, S. J.
    Varela, M.
    JOURNAL OF ELECTRON MICROSCOPY, 2011, 60 : S213 - S223
  • [24] Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy
    Sannomiya, Takumi
    Sawada, Hidetaka
    Nakamichi, Tomohiro
    Hosokawa, Fumio
    Nakamura, Yoshio
    Tanishiro, Yasumasa
    Takayanagi, Kunio
    ULTRAMICROSCOPY, 2013, 135 : 71 - 79
  • [25] Elemental mapping in scanning transmission electron microscopy
    Allen, L. J.
    D'Alfonso, A. J.
    Findlay, S. D.
    LeBeau, J. M.
    Lugg, N. R.
    Stemmer, S.
    ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2009 (EMAG 2009), 2010, 241
  • [26] On the history of scanning electron microscopy, of the electron microprobe, and of early contributions to transmission electron microscopy
    Von Ardenne M.
    Hawkes P.
    Mulvey T.
    Advances in Imaging and Electron Physics, 2021, 220 : 25 - 50
  • [27] On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope
    Sun, Cheng
    Mueller, Erich
    Meffert, Matthias
    Gerthsen, Dagmar
    MICROSCOPY AND MICROANALYSIS, 2018, 24 (02) : 99 - 106
  • [28] Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope
    Johnston-Peck, Aaron C.
    DuChene, Joseph S.
    Roberts, Alan D.
    Wei, Wei David
    Herzing, Andrew A.
    ULTRAMICROSCOPY, 2016, 170 : 1 - 9
  • [29] Beam damage by the induced electric field in transmission electron microscopy
    Jiang, Nan
    MICRON, 2016, 83 : 79 - 92
  • [30] A model based reconstruction technique for depth sectioning with scanning transmission electron microscopy
    Van den Broek, W.
    Van Aert, S.
    Van Dyck, D.
    ULTRAMICROSCOPY, 2010, 110 (05) : 548 - 554