Diffusion distribution model for damage mitigation in scanning transmission electron microscopy

被引:1
|
作者
Moshtaghpour, Amirafshar [1 ,2 ]
Velazco-Torrejon, Abner [1 ]
Nicholls, Daniel [2 ]
Robinson, Alex W. [2 ]
Kirkland, Angus I. [1 ,3 ]
Browning, Nigel D. [2 ]
机构
[1] Rosalind Franklin Inst, Correlated Imaging Theme, Harwell Sci & Innovat Campus, Didcot OX11 0QS, England
[2] Univ Liverpool, Dept Mech Mat & Aerosp Engn, Liverpool, England
[3] Univ Oxford, Dept Mat, Oxford, England
基金
英国科研创新办公室; 英国工程与自然科学研究理事会;
关键词
beam damage; compressive sensing; diffusion distribution; scanning transmission electron microscopy; RADIATION-DAMAGE; RESOLUTION; STEM;
D O I
10.1111/jmi.13351
中图分类号
TH742 [显微镜];
学科分类号
摘要
Despite the widespread use of Scanning Transmission Electron Microscopy (STEM) for observing the structure of materials at the atomic scale, a detailed understanding of some relevant electron beam damage mechanisms is limited. Recent reports suggest that certain types of damage can be modelled as a diffusion process and that the accumulation effects of this process must be kept low in order to reduce damage. We therefore develop an explicit mathematical formulation of spatiotemporal diffusion processes in STEM that take into account both instrument and sample parameters. Furthermore, our framework can aid the design of Diffusion Controlled Sampling (DCS) strategies using optimally selected probe positions in STEM, that constrain the cumulative diffusion distribution. Numerical simulations highlight the variability of the cumulative diffusion distribution for different experimental STEM configurations. These analytical and numerical frameworks can subsequently be used for careful design of 2- and 4-dimensional STEM experiments where beam damage is minimised.
引用
收藏
页码:57 / 77
页数:21
相关论文
共 50 条
  • [1] Contamination mitigation strategies for scanning transmission electron microscopy
    Mitchell, D. R. G.
    MICRON, 2015, 73 : 36 - 46
  • [2] A comparison of energy dispersive spectroscopy in transmission scanning electron microscopy with scanning transmission electron microscopy
    Carter, Jennifer L. W.
    Uz, Tugce Karakulak
    Ibrahim, Buhari
    Pigott, Jeffrey S.
    Gordon, Jerard, V
    ULTRAMICROSCOPY, 2025, 270
  • [3] COMPRESSIVE SCANNING TRANSMISSION ELECTRON MICROSCOPY
    Nicholls, D.
    Robinson, A.
    Wells, J.
    Moshtaghpour, A.
    Bahri, M.
    Kirkland, A.
    Browning, N.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1586 - 1590
  • [4] Scanning transmission electron microscopy for advanced characterization of ferroic materials
    Cabral, Matthew J.
    Chen, Zibin
    Liao, Xiaozhou
    MICROSTRUCTURES, 2023, 3 (04):
  • [5] Scanning moire fringe imaging by scanning transmission electron microscopy
    Su, Dong
    Zhu, Yimei
    ULTRAMICROSCOPY, 2010, 110 (03) : 229 - 233
  • [6] Low dose scanning transmission electron microscopy of organic crystals by scanning moire fringes
    S'ari, Mark
    Cattle, James
    Hondow, Nicole
    Brydson, Rik
    Brown, Andy
    MICRON, 2019, 120 : 1 - 9
  • [7] Consecutive light microscopy, scanning-transmission electron microscopy and transmission electron microscopy of traumatic human brain oedema and ischaemic brain damage
    Castejon, OJ
    Castejon, HV
    Diaz, M
    Castellano, A
    HISTOLOGY AND HISTOPATHOLOGY, 2001, 16 (04) : 1117 - 1134
  • [8] Four-Dimensional Scanning Transmission Electron Microscopy: From Material Microstructures to Physicochemical Properties
    Feng, Qilong
    Zhu, Chongzhi
    Sheng, Guan
    Sun, Tulai
    Li, Yonghe
    Zhu, Yihan
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (03)
  • [9] Aberration corrected Lorentz scanning transmission electron microscopy
    McVitie, S.
    McGrouther, D.
    McFadzean, S.
    MacLaren, D. A.
    O'Shea, K. J.
    Benitez, M. J.
    ULTRAMICROSCOPY, 2015, 152 : 57 - 62
  • [10] Interlacing in Atomic Resolution Scanning Transmission Electron Microscopy
    Peters, Jonathan J. P.
    Mullarkey, Tiarnan
    Gott, James A.
    Nelson, Elizabeth
    Jones, Lewys
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (04) : 1373 - 1379