Formalizing the Institution for Event-B in the Coq Proof Assistant

被引:3
作者
Reynolds, Conor [1 ]
机构
[1] Maynooth Univ, Maynooth, Kildare, Ireland
来源
RIGOROUS STATE-BASED METHODS, ABZ 2021 | 2021年 / 12709卷
关键词
Coq; Event-B; Institution theory; UNIVERSAL ALGEBRA;
D O I
10.1007/978-3-030-77543-8_17
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We formalize a fragment of the theory of institutions sufficient to establish basic facts about the institution EVT for Event-B, and its relationship with the institution FOPEQ for first-order predicate logic. We prove the satisfaction condition for EVT and encode the institution comorphism FOPEQ -> EVT embedding FOPEQ in EVT.
引用
收藏
页码:162 / 166
页数:5
相关论文
共 8 条
  • [1] Abrial J.-R., 2010, Modeling in Event-B: System and Software Engineering
  • [2] Capretta V, 1999, LECT NOTES COMPUT SC, V1690, P131
  • [3] Farrell Marie, 2017, Recent Trends in Algebraic Development Techniques. 23rd IFIP WG 1.3 International Workshop, WADT 2016. Revised Selected Papers. LNCS 10644, P104, DOI 10.1007/978-3-319-72044-9_8
  • [4] INSTITUTIONS - ABSTRACT MODEL-THEORY FOR SPECIFICATION AND PROGRAMMING
    GOGUEN, JA
    BURSTALL, RM
    [J]. JOURNAL OF THE ACM, 1992, 39 (01) : 95 - 146
  • [5] Formalization of Universal Algebra in Agda
    Gunther, Emmanuel
    Gadea, Alejandro
    Pagano, Miguel
    [J]. ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2018, 338 : 147 - 166
  • [6] Mossakowski T., 2007, Logica Universalis, P111
  • [7] Mossakowski T, 2007, LECT NOTES COMPUT SC, V4424, P519
  • [8] Sannella D., 2012, Foundations of Algebraic Specification and Formal Software Development, DOI [10.1007/978-3-642-17336-3, DOI 10.1007/978-3-642-17336-3]