Towards Multilingual Automatic Open-Domain Dialogue Evaluation

被引:0
|
作者
Mendonca, John [1 ,2 ,3 ]
Lavie, Alon [3 ,4 ]
Trancoso, Isabel [1 ,2 ]
机构
[1] INESC ID, Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[4] Phrase, Pittsburgh, PA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main limiting factor in the development of robust multilingual open-domain dialogue evaluation metrics is the lack of multilingual data and the limited availability of open-sourced multilingual dialogue systems. In this work, we propose a workaround for this lack of data by leveraging a strong multilingual pretrained encoder-based Language Model and augmenting existing English dialogue data using Machine Translation. We empirically show that the naive approach of finetuning a pretrained multilingual encoder model with translated data is insufficient to outperform the strong baseline of finetuning a multilingual model with only source data. Instead, the best approach consists in the careful curation of translated data using MT Quality Estimation metrics, excluding low quality translations that hinder its performance.
引用
收藏
页码:130 / 141
页数:12
相关论文
共 50 条
  • [41] Improving Response Quality with Backward Reasoning in Open-domain Dialogue Systems
    Li, Ziming
    Kiseleva, Julia
    de Rijke, Maarten
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 1940 - 1944
  • [42] Towards Credible Human Evaluation of Open-Domain Dialog Systems Using Interactive Setup
    Liu, Sijia
    Lange, Patrick
    Hedayatnia, Behnam
    Papangelis, Alexandros
    Jin, Di
    Wirth, Andrew
    Liu, Yang
    Hakkani-Tur, Dilek
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 11, 2023, : 13264 - 13272
  • [43] Towards Boosting the Open-Domain Chatbot with Human Feedback
    Lu, Hua
    Bao, Siqi
    He, Huang
    Wang, Fan
    Wu, Hua
    Wang, Haifeng
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 4060 - 4078
  • [44] Interpreting open-domain dialogue generation by disentangling latent feature representations
    Ye Wang
    Jingbo Liao
    Hong Yu
    Guoyin Wang
    Xiaoxia Zhang
    Li Liu
    Neural Computing and Applications, 2023, 35 : 20855 - 20867
  • [45] The Dialogue Dodecathlon: Open-Domain Knowledge and Image Grounded Conversational Agents
    Shuster, Kurt
    Ju, Da
    Roller, Stephen
    Dinan, Emily
    Boureau, Y-Lan
    Weston, Jason
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 2453 - 2470
  • [46] Interpreting open-domain dialogue generation by disentangling latent feature representations
    Wang, Ye
    Liao, Jingbo
    Yu, Hong
    Wang, Guoyin
    Zhang, Xiaoxia
    Liu, Li
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (28): : 20855 - 20867
  • [47] Unstructured Text Enhanced Open-Domain Dialogue System: A Systematic Survey
    Ma, Longxuan
    Li, Mingda
    Zhang, Wei-Nan
    Li, Jiapeng
    Liu, Ting
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2022, 40 (01)
  • [48] Text is NOT Enough: Integrating Visual Impressions into Open-domain Dialogue Generation
    Shen, Lei
    Zhan, Haolan
    Shen, Xin
    Song, Yonghao
    Zhao, Xiaofang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4287 - 4296
  • [49] Automatic summarization of open-domain multiparty dialogues in diverse genres
    Zechner, K
    COMPUTATIONAL LINGUISTICS, 2002, 28 (04) : 447 - 485
  • [50] LEARNING TO SELECT CONTEXT IN A HIERARCHICAL AND GLOBAL PERSPECTIVE FOR OPEN-DOMAIN DIALOGUE GENERATION
    Shen, Lei
    Zhan, Haolan
    Shen, Xin
    Feng, Yang
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7438 - 7442