VB-T PHD-SLAM: efficient SLAM under heavy-tailed noise

被引:1
作者
Zou, Han [1 ]
Wu, Sunyong [1 ,2 ]
Xue, Qiutiao [1 ]
Sun, Xiyan [3 ]
Wang, Bing [1 ]
机构
[1] Guilin Univ Elect Sci & Technol, Sch Math & Computat Sci, Guilin, Peoples R China
[2] Guilin Univ Elect Sci & Technol, Guangxi Key Lab Precis Nav Technol & Applicat, Guilin, Peoples R China
[3] Guilin Univ Elect Sci & Technol, Sch Informat & Commun, Guilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Heavy-tailed noise; student's t-distribution; variational Bayesian; PHD-SLAM; MULTI-BERNOULLI FILTER; SIMULTANEOUS LOCALIZATION; NAVIGATION; FASTSLAM; VECTOR; ROBUST;
D O I
10.1080/01691864.2024.2384425
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
To address the challenge of simultaneous localization and mapping (SLAM) in the presence of heavy-tailed noise, this paper introduces a robust probability hypothesis density (PHD) SLAM algorithm. This algorithm models measurement noise using the Student's t-distribution, which better captures the heavy-tailed nature of the noise. Since the prior density is assumed to be Gaussian mixture form, the posterior density is no longer Gaussian mixture form after the likelihood update of the t-distribution. A variational Bayesian approach is employed to ensure computable multi-target densities during filtering, minimizing the Kullback-Leibler divergence to obtain an approximate solution for the new marginal likelihood function. Then a new closed-form recursion of PHD-SLAM is derived by using t-distribution. Simulation results and real-world validations demonstrate that the proposed algorithm outperforms PHD-SLAM 1.0 and PHD-SLAM 2.0 in terms of both localization and mapping accuracy while maintaining computational efficiency in SLAM scenarios affected by heavy-tailed noise.
引用
收藏
页码:1093 / 1105
页数:13
相关论文
共 50 条
[1]   Approximate Inference in State-Space Models With Heavy-Tailed Noise [J].
Agamennoni, Gabriel ;
Nieto, Juan I. ;
Nebot, Eduardo M. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) :5024-5037
[2]   Simultaneous localization and mapping (SLAM): Part II [J].
Bailey, Tim ;
Durrant-Whyte, Hugh .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2006, 13 (03) :108-117
[3]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[4]   Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age [J].
Cadena, Cesar ;
Carlone, Luca ;
Carrillo, Henry ;
Latif, Yasir ;
Scaramuzza, Davide ;
Neira, Jose ;
Reid, Ian ;
Leonard, John J. .
IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (06) :1309-1332
[5]   The Labeled Multi-Bernoulli SLAM Filter [J].
Deusch, Hendrik ;
Reuter, Stephan ;
Dietmayer, Klaus .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) :1561-1565
[6]  
Dong X., 2023, IEEE T WIRELESS COMM
[7]   An Improved PHD Filtering for DOA Tracking With Sparse Array via Unscented Transform Strategy [J].
Dong, Xudong ;
Sun, Meng ;
Zhao, Jun ;
Zhang, Xiaofei .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (08) :3174-3178
[8]   Multi-Maneuvering Sources DOA Tracking With Improved Interactive Multi-Model Multi-Bernoulli Filter for Acoustic Vector Sensor (AVS) Array [J].
Dong, Xudong ;
Zhang, Xiaofei ;
Zhao, Jun ;
Sun, Meng ;
Wu, Qihui .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (08) :7825-7838
[9]   PHD-SLAM 2.0: Efficient SLAM in the Presence of Missdetections and Clutter [J].
Gao, Lin ;
Battistelli, Giorgio ;
Chisci, Luigi .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (05) :1834-1843
[10]   Improving data association in vision-based. SLAM [J].
Gil, Arturo ;
Reinoso, Oscar ;
Mozos, Oscar Martinez ;
Stachniss, Cyrill ;
Burgard, Wolfram .
2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, 2006, :2076-2081