In this work we construct a surrogate model using artificial neural networks (ANN) to predict the steady-state behavior of an unmanned combat aircraft. We employ various strategies to improve the model's accuracy, including the consideration of design tolerances, creating independent surrogate models for the different flow regimes and encoding non-numeric input features. We also explore alternative machine learning models, albeit they demonstrated a lower reliability than ANNs. Two scenarios are considered for the target variable: one focusing solely on predicting the pitching moment coefficient, and the other incorporating the roll moment coefficient as well. We investigate different methods for handling multiple targets, finding that constructing a single model with multiple outputs consistently outperforms developing separate models for each target variable. Overall, the ANN provides predictions that show excellent agreement with the experimental data, demonstrating its effectiveness and reliability in aerodynamic modeling.
机构:
Politecn Milan, Dipartimento Ingn Civile & Ambientale, Piazza L da Vinci 32, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Ingn Civile & Ambientale, Piazza L da Vinci 32, I-20133 Milan, Italy
Torzoni, Matteo
Manzoni, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, MOX, Piazza L da Vinci 32, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Ingn Civile & Ambientale, Piazza L da Vinci 32, I-20133 Milan, Italy
Manzoni, Andrea
Mariani, Stefano
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Ingn Civile & Ambientale, Piazza L da Vinci 32, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Ingn Civile & Ambientale, Piazza L da Vinci 32, I-20133 Milan, Italy
机构:
South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
China Singapore Int Joint Res Inst, Guangzhou 510700, Peoples R ChinaSouth China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
Eslamlou, Armin Dadras
Huang, Shiping
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
China Singapore Int Joint Res Inst, Guangzhou 510700, Peoples R ChinaSouth China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
机构:
Hannam Univ, Dept Artificial Intelligence, 70 Hannam Ro, Daejeon 34430, South KoreaHannam Univ, Dept Artificial Intelligence, 70 Hannam Ro, Daejeon 34430, South Korea
Yoon, Sungsik
Lee, Young-Joo
论文数: 0引用数: 0
h-index: 0
机构:
Ulsan Natl Inst Sci & Technol, Dept Urban & Environm Engn, 50 UNIST Gil, Ulsan 44919, South KoreaHannam Univ, Dept Artificial Intelligence, 70 Hannam Ro, Daejeon 34430, South Korea