A five-dimensional Lorenz-type model near the temperature of maximum density

被引:0
作者
Rastegin, A. E. [1 ]
机构
[1] Irkutsk State Univ, K Marx St 1, Irkutsk 664003, Russia
关键词
THERMAL-CONVECTION; WATER; SIMULATIONS; INSTABILITY;
D O I
10.1063/5.0216008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The current study formulates a convective model of the Lorenz type near the temperature of maximum density. The existence of this temperature actualizes water dynamics in temperate lakes. There is a conceptual interest in what this feature induces in Lorenz-type models. The consideration starts with the zero coefficient of thermal expansion. Other steps are like the famous Tritton's approach to derive the Lorenz model. This allows us to reduce difficulties with a selection of Galerkin functions. The analysis focuses on changes induced by zeroing the coefficient of thermal expansion. It results in a five-dimensional Lorenz-type model, whose equations are all nonlinear. The new model reiterates many features of the standard Lorenz model. The nontrivial critical points appear when the zero critical point becomes unstable. The nontrivial critical points correspond to two possible directions of fluid flow. Phase trajectories of the new model were studied numerically. The results are similar to the known five-dimensional extensions of the Lorenz model.
引用
收藏
页数:10
相关论文
共 69 条
[1]  
Abadir K. M, 2005, MATRIX ALGEBRA, V1
[2]   SOME PROPERTIES OF AN 8-MODE LORENZ MODEL FOR CONVECTION IN BINARY FLUIDS [J].
AHLERS, G ;
LUCKE, M .
PHYSICAL REVIEW A, 1987, 35 (01) :470-473
[3]   Prandtl-number dependence of heat transport in turbulent Rayleigh-Benard convection [J].
Ahlers, G ;
Xu, XC .
PHYSICAL REVIEW LETTERS, 2001, 86 (15) :3320-3323
[4]   THERMAL-CONVECTION UNDER EXTERNAL MODULATION OF THE DRIVING FORCE .1. THE LORENZ MODEL [J].
AHLERS, G ;
HOHENBERG, PC ;
LUCKE, M .
PHYSICAL REVIEW A, 1985, 32 (06) :3493-3518
[5]  
[Anonymous], 1982, The Lorenz Equations: Bifurcation, Chaos, Strange Attractors
[6]   Baikal neutrino telescope-An underwater laboratory for astroparticle physics and environmental studies [J].
Aynutdinov, V. ;
Avrorin, A. ;
Balkanov, V. ;
Belolaptiko, I. ;
Bogorodsly, D. ;
Budnev, N. ;
Danilchenko, I. ;
Domogatsky, G. ;
Doroshenko, A. ;
Dyachok, A. ;
Dzhilkibaev, Zh. A. ;
Fialkovsky, S. ;
Gaponenko, O. ;
Golubkov, K. ;
Gress, O. ;
Gress, T. ;
Grishin, O. ;
Klabukov, A. ;
Klimov, A. ;
Kochanov, A. ;
Konischev, K. ;
Koshechkin, A. ;
Kulepov, V. ;
Kuzmichev, L. ;
Lovtsov, S. ;
Middell, E. ;
Mikheyev, S. ;
Milenin, M. ;
Mirgazov, R. ;
Osipova, E. ;
Pan'kov, G. ;
Pan'kov, L. ;
Panfilov, A. ;
Petukhov, D. ;
Pliskovsky, E. ;
Pokhil, P. ;
Poleschuk, V. ;
Popova, E. ;
Rastegin, A. ;
Prosin, V. ;
Rozanov, M. ;
Rubtzov, V. ;
Sheifler, A. ;
Shirokov, A. ;
Shoibonov, B. ;
Spiering, Ch. ;
Tarashansky, B. ;
Wischnewski, R. ;
Yashin, I. ;
Zhukov, V. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 598 (01) :282-288
[7]  
Berg Pierre., 1986, Order within chaos: Towards a deterministic approach to turbulence
[8]   LIMIT-CYCLES IN A FORCED LORENZ SYSTEM [J].
BHATTACHARJEE, JK ;
BANERJEE, K ;
CHOWDHURY, D ;
SARAVANAN, R ;
MANNA, S .
PHYSICS LETTERS A, 1984, 104 (01) :33-35
[9]  
Bhattacharjee JK., 1987, CONVECTION CHAOS FLU
[10]  
Bohr T., 1998, Dynamical systems approach to turbulence