Automation of finding strong gravitational lenses in the Kilo Degree Survey with U - DenseLens (DenseLens plus Segmentation)

被引:0
|
作者
Chowdhary, Bharath N. [1 ]
Koopmans, Leon V. E. [1 ]
Valentijn, Edwin A. [1 ]
Kleijn, Gijs Verdoes [1 ]
de Jong, Jelte T. A. [1 ]
Napolitano, Nicola [3 ,4 ,5 ]
Li, Rui [6 ,7 ]
Tortora, Crescenzo [2 ]
Busillo, Valerio [2 ]
Dong, Yue [8 ]
机构
[1] Univ Groningen, Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands
[2] INAF Osservatorio Astron Capodimonte, Via Moiariello 16, I-80131 Naples, Italy
[3] Univ Naples Federico II, Dept Phys E Pancini, Via Cintia 21, Naples 519082, Italy
[4] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus,2 Daxue Rd, Zhuhai 519082, Peoples R China
[5] CSST Sci Ctr Guangdong Hong Kong Macau Great Bay A, Zhuhai 519082, Peoples R China
[6] Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing 100049, Peoples R China
[7] Chinese Acad Sci, Natl Astron Observ, 20A Datun Rd, Beijing 100012, Peoples R China
[8] Xian Jiaotong Liverpool Univ, Suzhou 215000, Peoples R China
关键词
gravitational lensing: strong; EARLY-TYPE GALAXIES; SURVEY SCIENCE VERIFICATION; STRONG-LENSING SYSTEMS; MASS-DENSITY PROFILE; ALL-SKY SURVEY; DARK ENERGY; ACS SURVEY; CANDIDATE SELECTION; HUBBLE CONSTANT; NEURAL-NETWORKS;
D O I
10.1093/mnras/stae1882
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the context of upcoming large-scale surveys like Euclid, the necessity for the automation of strong lens detection is essential. While existing machine learning pipelines heavily rely on the classification probability (P), this study intends to address the importance of integrating additional metrics, such as Information Content (IC) and the number of pixels above the segmentation threshold (n(s)), to alleviate the false positive rate in unbalanced data-sets. In this work, we introduce a segmentation algorithm (U-Net) as a supplementary step in the established strong gravitational lens identification pipeline (Denselens), which primarily utilizes P-mean and ICmean parameters for the detection and ranking. The results demonstrate that the inclusion of segmentation enables significant reduction of false positives by approximately 25 per cent in the final sample extracted from DenseLens, without compromising the identification of strong lenses. The main objective of this study is to automate the strong lens detection process by integrating these three metrics. To achieve this, a decision tree-based selection process is introduced, applied to the Kilo Degree Survey (KiDS) data. This process involves rank-ordering based on classification scores (P-mean), filtering based on Information Content (ICmean), and segmentation score (n(s)). Additionally, the study presents 14 newly discovered strong lensing candidates identified by the U-Denselens network using the KiDS DR4 data.
引用
收藏
页码:1426 / 1441
页数:16
相关论文
共 4 条
  • [1] DenseLens - Using DenseNet ensembles and information criteria for finding and rank-ordering strong gravitational lenses
    Nagam, Bharath Chowdhary
    Koopmans, Leon V. E.
    Valentijn, Edwin A.
    Kleijn, Gijs Verdoes
    de Jong, Jelte T. A.
    Napolitano, Nicola
    Li, Rui
    Tortora, Crescenzo
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 523 (03) : 4188 - 4201
  • [2] Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks
    Petrillo, C. E.
    Tortora, C.
    Chatterjee, S.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Napolitano, N. R.
    Covone, G.
    Schneider, P.
    Grado, A.
    McFarland, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 472 (01) : 1129 - 1150
  • [3] Finding Strong Gravitational Lenses in the DESI DECam Legacy Survey
    Huang, X.
    Storfer, C.
    Ravi, V
    Pilon, A.
    Domingo, M.
    Schlegel, D. J.
    Bailey, S.
    Dey, A.
    Gupta, R. R.
    Herrera, D.
    Juneau, S.
    Landriau, M.
    Lang, D.
    Meisner, A.
    Moustakas, J.
    Myers, A. D.
    Schlafly, E. F.
    Valdes, F.
    Weaver, B. A.
    Yang, J.
    Yeche, C.
    ASTROPHYSICAL JOURNAL, 2020, 894 (01)
  • [4] LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks
    Petrillo, C. E.
    Tortora, C.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Bilicki, M.
    Napolitano, N. R.
    Chatterjee, S.
    Covone, G.
    Dvornik, A.
    Erben, T.
    Getman, F.
    Giblin, B.
    Heymans, C.
    de Jong, J. T. A.
    Kuijken, K.
    Schneider, P.
    Shan, H.
    Spiniello, C.
    Wright, A. H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (03) : 3879 - 3896