Artificial intelligence predicts undiagnosed atrial fibrillation in patients with embolic stroke of undetermined source using sinus rhythm electrocardiograms

被引:4
|
作者
Choi, Jina [1 ]
Kim, Ju Youn [2 ]
Cho, Min Soo [3 ]
Kim, Minsu [4 ]
Kim, Joonghee [5 ]
Oh, Il-Young [1 ]
Cho, Youngjin [1 ]
Lee, Ji Hyun [1 ]
机构
[1] Seoul Natl Univ, Bundang Hosp, Cardiovasc Ctr, Dept Internal Med, Seongnam, South Korea
[2] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Internal Med,Heart Vasc Stroke Inst,Div Cardi, Seoul, South Korea
[3] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Internal Med, Seoul, South Korea
[4] Chungnam Natl Univ, Coll Med, Dept Internal Med, Div Cardiol, Daejeon, South Korea
[5] Seoul Natl Univ, Bundang Hosp, Dept Emergency Med, Seongnam, South Korea
关键词
Atrial fibrillation; Artificial intelligence; Prediction model; Twelve-lead electrocardiogram; Multicenter study; Embolic stroke of undetermined source; CRYPTOGENIC STROKE;
D O I
10.1016/j.hrthm.2024.03.029
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Artificial intelligence (AI)-enabled sinus rhythm (SR) electrocardiogram (ECG) interpretation can aid in identifying undiagnosed paroxysmal atrial fibrillation (AF) in patients with embolic stroke of undetermined source (ESUS). OBJECTIVE The purpose of this study was to assess the efficacy of an AI model in identifying AF based on SR ECGs in patients with ESUS. METHODS A transformer-based vision AI model was developed using 737,815 SR ECGs from patients with and without AF to detect current paroxysmal AF or predict the future development of AF within a 2-year period. Probability of AF was calculated from baseline SR ECGs using this algorithm. Its diagnostic performance was further tested in a cohort of 352 ESUS patients from 4 tertiary hospitals, all of whom were monitored using an insertable cardiac monitor (ICM) for AF surveillance. RESULTS Over 25.1-month follow-up, AF episodes lasting >= 1 hour were identified in 58 patients (14.4%) using ICMs. In the receiver operating curve (ROC) analysis, the area under the curve for the AI algorithm to identify AF >= 1 hour was 0.806, which improved to 0.880 after integrating the clinical parameters into the model. The AI algorithm exhibited greater accuracy in identifying longer AF episodes (ROC for AF >= 12 hours: 0.837, for AF >= 24 hours: 0.879) and a temporal trend indicating that the AI-based AF risk score increased as the ECG recording approached the AF onset (P for trend <.0001). CONCLUSIONS Our AI model demonstrated excellent diagnostic performance in predicting AF in patients with ESUS, potentially enhancing patient prognosis through timely intervention and secondary prevention of ischemic stroke in ESUS cohorts.
引用
收藏
页码:1647 / 1655
页数:9
相关论文
共 50 条
  • [1] Atrial fibrillation predictors in patients with embolic stroke of undetermined source
    Ramos-Maqueda, Javier
    Navarro-Valverde, Cristina
    Esteve-Ruiz, Irene
    Cabrera-Ramos, Mercedes
    Rivera-Lopez, Ricardo
    Garcia-Medina, Dolores
    Pavon-Jimenez, Ricardo
    Molano-Casimiro, Francisco Javier
    MEDICINA CLINICA, 2021, 157 (12): : 555 - 560
  • [2] Identifying Atrial Fibrillation With Sinus Rhythm Electrocardiogram in Embolic Stroke of Undetermined Source: A Validation Study With Insertable Cardiac Monitors
    Jeon, Ki-Hyun
    Jang, Jong-Hwan
    Kang, Sora
    Lee, Hak Seung
    Lee, Min Sung
    Son, Jeong Min
    Jo, Yong-Peon
    Park, Tae Jun
    Oh, Il-Young
    Kwon, Joon-myoung
    Lee, Ji Hyun
    KOREAN CIRCULATION JOURNAL, 2023, 53 (11) : 758 - 771
  • [3] Embolic stroke of undetermined source: Beyond atrial fibrillation
    Arauz, A.
    Arteaga, C.
    Zapata-Gomez, C.
    Ramos-Ventura, C.
    Mendez, B.
    Otiniano-Sifuentes, R.
    Haseeb, S.
    Gonzalez-Oscoy, R.
    Baranchuk, A.
    NEUROLOGIA, 2022, 37 (05): : 362 - 370
  • [4] Atrial fibrillation in embolic stroke of undetermined source: role of advanced imaging of left atrial function
    Chousou, Panagiota Anna
    Chattopadhyay, Rahul
    Ring, Liam
    Khadjooi, Kayvan
    Warburton, Elizabeth A.
    Mukherjee, Trisha
    Bhalraam, U.
    Tsampasian, Vasiliki
    Potter, John
    Perperoglou, Aris
    Pugh, Peter John
    Vassiliou, Vassilios S.
    EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2023, 30 (18) : 1965 - 1974
  • [5] Artificial Intelligence-Enabled ECG to Identify Silent Atrial Fibrillation in Embolic Stroke of Unknown Source
    Rabinstein, Alejandro A.
    Yost, Micah D.
    Faust, Louis
    Kashou, Anthony H.
    Latif, Omar S.
    Graff-Radford, Jonathan
    Attia, Itzhak Zachi
    Yao, Xiaoxi
    Noseworthy, Peter A.
    Friedman, Paul A.
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2021, 30 (09)
  • [6] Machine Learning Modeling to Predict Atrial Fibrillation Detection in Embolic Stroke of Undetermined Source Patients
    Ming, Chua
    Lee, Geraldine J. W.
    Teo, Yao Hao
    Teo, Yao Neng
    Toh, Emma M. S.
    Li, Tony Y. W.
    Guo, Chloe Yitian
    Ding, Jiayan
    Zhou, Xinyan
    Teoh, Hock Luen
    Seow, Swee-Chong
    Yeo, Leonard L. L.
    Sia, Ching-Hui
    Lip, Gregory Y. H.
    Motani, Mehul
    Tan, Benjamin Y. Q.
    JOURNAL OF PERSONALIZED MEDICINE, 2024, 14 (05):
  • [7] Multiparametric identification of subclinical atrial fibrillation after an embolic stroke of undetermined source
    Del Monte, Alvise
    Rivezzi, Francesco
    Giacomin, Enrico
    Peruzza, Francesco
    Del Greco, Maurizio
    Maines, Massimiliano
    Migliore, Federico
    Zorzi, Alessandro
    Viaro, Federica
    Pieroni, Alessio
    La Licata, Andrea
    Baracchini, Claudio
    Bertaglia, Emanuele
    NEUROLOGICAL SCIENCES, 2023, 44 (03) : 979 - 988
  • [8] Atrial cardiopathy predicts detection of atrial fibrillation in embolic stroke of undetermined source: real-life data
    Ana Rita Silva
    Carla Pires
    Filipa Meira-Carvalho
    Mariana Santos
    Nuno Pimenta Antunes
    José Nuno Alves
    Carla Ferreira
    João Pinho
    Neurological Sciences, 2022, 43 : 2383 - 2386
  • [9] Atrial cardiopathy predicts detection of atrial fibrillation in embolic stroke of undetermined source: real-life data
    Silva, Ana Rita
    Pires, Carla
    Meira-Carvalho, Filipa
    Santos, Mariana
    Antunes, Nuno Pimenta
    Alves, Jose Nuno
    Ferreira, Carla
    Pinho, Joao
    NEUROLOGICAL SCIENCES, 2022, 43 (04) : 2383 - 2386
  • [10] Left atrial strain, embolic stroke of undetermined source, and atrial fibrillation detection
    Bashir, Zubair
    Chen, Edward W.
    Wang, Shuyuan
    Shu, Liqi
    Goldstein, Eric D.
    Rana, Maheen
    Kala, Narendra
    Dai, Xing
    Mandel, Daniel
    Has, Phinnara
    Xie, Mingxing
    Wang, Tao
    Dickey, John B.
    Poppas, Athena
    Simmons, James
    Song, Christopher
    Yaghi, Shadi
    Haines, Philip
    ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES, 2024, 41 (01):