Exceptional sets related to the product of consecutive digits in Luroth expansions

被引:1
作者
Wang, Jin-Feng [1 ]
Zhou, Qing-Long [2 ]
机构
[1] Nanchang Hangkong Univ, Sch Math & Informat Sci, Nanchang 330063, Peoples R China
[2] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
来源
PUBLICATIONES MATHEMATICAE DEBRECEN | 2024年 / 104卷 / 3-4期
基金
中国国家自然科学基金;
关键词
Luroth Classification; Diophantine approximaion; Hausdorff dimension; PARTIAL QUOTIENTS; DIMENSION;
D O I
10.5486/PMD.2024.9538
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every real number x <euro> (0, 1] admits a L & uuml;roth expansion [d(1)(z), d(2)(x), ...] with da(1) N >= 2 being its digits. Let {,n> 1} be the sequence of con- vergents of the L & uuml;roth expansion of z. We study the growth rate of the product of consecutive digits relative to the denominator of the convergent for the L & uuml;roth expan- sion of an irrational number. More precisely, given a natural number m, we prove that the set<br /> E-m(beta) = {x <euro> (0, 1]: lim sup(n -> infinity)log (d(a) (x) d(n+1 (x) ... d)n+m(x)/log q(n (x) = beta})<br /> and the set<br /> log (2)<br /> E-m (beta) = {z <euro> (0,1]: lim sup(n -> infinity log) (d(a)(x) d(n+1 1(x) .. dn+m (x)) /log q)n((x) >= beta}) share the same Hausdorff dimension for 8 >= 0. It significantly generalises the existing results on the Hausdorff dimension of E-1(beta) and E-1(beta).
引用
收藏
页码:279 / 314
页数:36
相关论文
共 33 条
  • [21] A result on the maximal length of consecutive 0 digits in β-expansions
    Gao, Xiang
    Hu, Hui
    Li, Zhihui
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (02) : 656 - 665
  • [22] Hausdorff dimensions of sets related to Luroth expansion
    Gui, Y.
    Li, W.
    ACTA MATHEMATICA HUNGARICA, 2016, 150 (02) : 286 - 302
  • [23] EXCEPTIONAL SETS RELATED TO THE RUN-LENGTH FUNCTION OF BETA-EXPANSIONS
    Fang, Lulu
    Song, Kunkun
    Wu, Min
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (04)
  • [24] Exceptional sets of the Oppenheim expansions over the field of formal Laurent series
    Lu, Mei-Ying
    Liu, Jia
    Zhang, Zhen-Liang
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 42 : 253 - 268
  • [25] Hausdorff dimensions of some exceptional sets in Engel expansions
    Lu, Meiying
    Liu, Jia
    JOURNAL OF NUMBER THEORY, 2018, 185 : 490 - 498
  • [26] ON SOME EXCEPTIONAL SETS IN ENGEL EXPANSIONS AND HAUSDORFF DIMENSIONS
    Liu, Jia
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [27] THE EXCEPTIONAL SETS ON THE RUN-LENGTH FUNCTION OF β-EXPANSIONS
    Zheng, Lixuan
    Wu, Min
    Li, Bing
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (06)
  • [28] Hausdorff dimension of some exceptional sets in Lüroth expansions
    Ao Wang
    Xinyun Zhang
    Czechoslovak Mathematical Journal, 2025, 75 (2) : 461 - 484
  • [29] Metric properties and exceptional sets of β-expansions over formal Laurent series
    Li, Bing
    Wu, Jun
    Xu, Jian
    MONATSHEFTE FUR MATHEMATIK, 2008, 155 (02): : 145 - 160
  • [30] Exceptional sets to Shallit's law of leap years in Pierce expansions
    Ahn, Min Woong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 545 (01)