A systematic review of deep learning techniques for plant diseases

被引:6
|
作者
Pacal, Ishak [1 ]
Kunduracioglu, Ismail [1 ]
Alma, Mehmet Hakki [2 ]
Deveci, Muhammet [3 ,4 ,5 ]
Kadry, Seifedine [6 ,7 ]
Nedoma, Jan [8 ]
Slany, Vlastimil [9 ]
Martinek, Radek [5 ]
机构
[1] Igdir Univ, Engn Fac, Dept Comp Engn, TR-76000 Igdir, Turkiye
[2] Fac Agr, Biosyst Engn, TR-76000 Igdir, Turkiye
[3] Natl Def Univ, Turkish Naval Acad, Dept Ind Engn, TR-34942 Istanbul, Turkiye
[4] Western Caspian Univ, Dept Informat Technol, Baku 1001, Azerbaijan
[5] VSB Tech Univ Ostrava, Dept Cybernet & Biomed Engn, Ostrava 70800, Czech Republic
[6] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[7] Middle East Univ, MEU Res Unit, Amman 11831, Jordan
[8] VSB Tech Univ Ostrava, Dept Telecommun, Ostrava 70800, Czech Republic
[9] Mendel Univ Brno, Dept Agr Food & Environm Engn, Brno 61300, Czech Republic
关键词
Plant disease detection; Plant disease classification; Plant disease segmentation; Deep learning; Vision transformers; NEURAL-NETWORK; CLASSIFICATION;
D O I
10.1007/s10462-024-10944-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Agriculture is one of the most crucial sectors, meeting the fundamental food needs of humanity. Plant diseases increase food economic and food security concerns for countries and disrupt their agricultural planning. Traditional methods for detecting plant diseases require a lot of labor and time. Consequently, many researchers and institutions strive to address these issues using advanced technological methods. Deep learning-based plant disease detection offers considerable progress and hope compared to classical methods. When trained with large and high-quality datasets, these technologies robustly detect diseases on plant leaves in early stages. This study systematically reviews the application of deep learning techniques in plant disease detection by analyzing 160 research articles from 2020 to 2024. The studies are examined in three different areas: classification, detection, and segmentation of diseases on plant leaves, while also thoroughly reviewing publicly available datasets. This systematic review offers a comprehensive assessment of the current literature, detailing the most popular deep learning architectures, the most frequently studied plant diseases, datasets, encountered challenges, and various perspectives. It provides new insights for researchers working in the agricultural sector. Moreover, it addresses the major challenges in the field of disease detection in agriculture. Thus, this study offers valuable information and a suitable solution based on deep learning applications for agricultural sustainability.
引用
收藏
页数:39
相关论文
共 50 条
  • [41] Deep learning and computer vision in plant disease detection: a comprehensive review of techniques, models, and trends in precision agriculture
    Upadhyay, Abhishek
    Chandel, Narendra Singh
    Singh, Krishna Pratap
    Chakraborty, Subir Kumar
    Nandede, Balaji M.
    Kumar, Mohit
    Subeesh, A.
    Upendar, Konga
    Salem, Ali
    Elbeltagi, Ahmed
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (03)
  • [42] A comprehensive and systematic look up into deep learning based object detection techniques: A review
    Sharma, Vipal Kumar
    Mir, Roohie Naaz
    COMPUTER SCIENCE REVIEW, 2020, 38
  • [43] A systematic review on machine learning and deep learning techniques in cancer survival prediction
    Deepa, P.
    Gunavathi, C.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 174 : 62 - 71
  • [44] Data Augmentation Techniques to Detect Cervical Cancer Using Deep Learning: A Systematic Review
    Wubineh, Betelhem Zewdu
    Rusiecki, Andrzej
    Halawa, Krzysztof
    SYSTEM DEPENDABILITY-THEORY AND APPLICATIONS, DEPCOS-RELCOMEX 2024, 2024, 1026 : 325 - 336
  • [45] Deep Learning Techniques for Automated Dementia Diagnosis Using Neuroimaging Modalities: A Systematic Review
    Ozkan, Dilek
    Katar, Oguzhan
    Ak, Murat
    Al-Antari, Mugahed A.
    Yasan Ak, Nehir
    Yildirim, Ozal
    Mir, Hasan S.
    Tan, Ru-San
    Rajendra Acharya, U.
    IEEE ACCESS, 2024, 12 : 127879 - 127902
  • [46] Application of Deep Learning Techniques in Diagnosis of Covid-19 (Coronavirus): A Systematic Review
    Bhosale, Yogesh H.
    Patnaik, K. Sridhar
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 3551 - 3603
  • [47] Epileptic Seizures Detection Using Deep Learning Techniques: A Review
    Shoeibi, Afshin
    Khodatars, Marjane
    Ghassemi, Navid
    Jafari, Mahboobeh
    Moridian, Parisa
    Alizadehsani, Roohallah
    Panahiazar, Maryam
    Khozeimeh, Fahime
    Zare, Assef
    Hosseini-Nejad, Hossein
    Khosravi, Abbas
    Atiya, Amir F.
    Aminshahidi, Diba
    Hussain, Sadiq
    Rouhani, Modjtaba
    Nahavandi, Saeid
    Acharya, Udyavara Rajendra
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (11)
  • [48] Skin Cancer Detection: A Review Using Deep Learning Techniques
    Dildar, Mehwish
    Akram, Shumaila
    Irfan, Muhammad
    Khan, Hikmat Ullah
    Ramzan, Muhammad
    Mahmood, Abdur Rehman
    Alsaiari, Soliman Ayed
    Saeed, Abdul Hakeem M.
    Alraddadi, Mohammed Olaythah
    Mahnashi, Mater Hussen
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (10)
  • [49] Advanced deep transfer learning techniques for efficient detection of cotton plant diseases
    Johri, Prashant
    Kim, Seongki
    Dixit, Kumud
    Sharma, Prakhar
    Kakkar, Barkha
    Kumar, Yogesh
    Shafi, Jana
    Ijaz, Muhammad Fazal
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [50] A Systematic Review of Medicinal Plant Identification Using Deep Learning
    Trien Phat Tran
    Din, Fareed Ud
    Brankovic, Ljiljana
    Sanin, Cesar
    Hester, Susan M.
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, ACIIDS 2024, 2024, 14796 : 3 - 14