Global solutions of approximation problems in Krein spaces

被引:0
作者
Contino, M. [1 ,2 ,3 ]
机构
[1] Univ Complutense Madrid, Fac Matemat, Dept Anal Matemat, Madrid, Spain
[2] Inst Argentino Matemat Alberto Calderon CONICET, Saavedra 15, Buenos Aires, Argentina
[3] Univ Buenos Aires, Fac Ingn, Buenos Aires, Argentina
关键词
Indefinite least square problems; indefinite optimal inverses; Krein spaces; LINEAR-ESTIMATION; PROJECTIONS; OPERATORS;
D O I
10.1080/03081087.2024.2385967
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Three approximation problems in Krein spaces are studied, namely the indefinite weighted least squares problem and the related problems of indefinite abstract splines and smoothing. In each case, we analyse the existence of a linear and continuous operator that maps each data point to its solution and when the associated operator problem considering the J-trace has a solution.
引用
收藏
页码:741 / 762
页数:22
相关论文
共 37 条
[31]  
KREIN MG, 1947, MAT SBORNIK, V20, P431
[32]   Learning SVM in Krein Spaces [J].
Loosli, Gaelle ;
Canu, Stephane ;
Ong, Cheng Soon .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (06) :1204-1216
[33]  
Mitra SK., 1975, SANKHYA A, V37, P550
[34]  
Ong C.S., 2004, Proceedings of the twenty-first international conference on machine learning, V69, DOI DOI 10.1145/1015330.1015443
[35]  
Ringrose J.R., 1971, Compact Non-self-adjoint Operators
[36]  
Sayed A, 1996, Oper Theory Adv Appl, P309
[37]  
Sujit Kumar Mitra, 1974, Linear Algebra and Its Applications, V9, P155, DOI 10.1016/0024-3795(74)90034-2