Parameter estimation from an Ornstein-Uhlenbeck process with measurement noise

被引:1
作者
Carter, Simon [1 ]
Mujica-Parodi, Lilianne R. [2 ,3 ,4 ]
Strey, Helmut H. [2 ,3 ]
机构
[1] SUNY Stony Brook, Appl Math & Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Biomed Engn Dept, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
[4] Santa Fe Inst, Santa Fe, NM 87501 USA
基金
美国国家科学基金会;
关键词
MODEL;
D O I
10.1103/PhysRevE.110.044112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the impact of noise on parameter fitting for an Ornstein-Uhlenbeck process, focusing on the effects of multiplicative and thermal noise on the accuracy of signal separation. To address these issues, we propose algorithms and methods that can effectively distinguish between thermal and multiplicative noise and improve the precision of parameter estimation for optimal data analysis. Specifically, we explore the impact of both multiplicative and thermal noise on the obfuscation of the actual signal and propose methods to resolve them. First, we present an algorithm that can effectively separate thermal noise with comparable performance to Hamilton Monte Carlo (HMC) methods, but with significantly improved speed. We then analyze multiplicative noise and demonstrate that HMC is insufficient for isolating thermal and multiplicative noise. However, we show that with additional knowledge of the ratio between thermal and multiplicative noise, we can accurately distinguish between the two types of noise when provided with a sufficiently large sampling rate or an amplitude of multiplicative noise that is smaller than the thermal noise. Thus, we demonstrate the mechanism underlying an otherwise counterintuitive phenomenon: when multiplicative noise dominates the noise spectrum, one can successfully estimate the parameters for such systems after adding additional white noise to shift the noise balance.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] The Inverse First Passage time method for a two dimensional Ornstein Uhlenbeck process with neuronal application
    Civallero, Alessia
    Zucca, Cristina
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (06) : 8162 - 8178
  • [42] PARAMETER ESTIMATION FOR SPDEs WITH MULTIPLICATIVE FRACTIONAL NOISE
    Cialenco, Igor
    STOCHASTICS AND DYNAMICS, 2010, 10 (04) : 561 - 576
  • [43] Simultaneously Parameter Identification and Measurement-Noise Covariance estimation of a Proton Exchange Membrane Fuel Cell
    Ghaderi, Razieh
    Daeichian, Ndabolghasem
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION AND AUTOMATION (ICCIA), 2019, : 343 - 347
  • [44] Novel parameter estimation of autoregressive signals in the presence of noise
    Xia, Youshen
    Zheng, Wei Xing
    AUTOMATICA, 2015, 62 : 98 - 105
  • [45] Parameter Estimation of Champernowne Distribution For Modeling Ocean Ambient Noise
    Chakrasali, Sadashiva
    Sunitha, Y. N.
    Sharathkumar, Y. N.
    2013 IEEE CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT 2013), 2013, : 1 - 3
  • [46] Dataset, Noise Analysis, and Automated Parameter Estimation for Natural Steganography
    Woo, Ivy K. Y.
    Yiu, Sheung
    Yin, Hoover H. F.
    Lai, Russell W. F.
    PROCEEDINGS OF THE 2024 ACM WORKSHOP ON INFORMATION HIDING AND MULTIMEDIA SECURITY, IH&MMSEC 2024, 2024, : 13 - 18
  • [47] An innovative parameter estimation for fractional order systems impulse noise
    Cui, Rongzhi
    Wei, Yiheng
    Cheng, Songsong
    Wang, Yong
    ISA TRANSACTIONS, 2018, 82 : 120 - 129
  • [48] Moderate Deviation for Parameter Estimation in the Rayleigh Diffusion Process
    Kuang, Nenghui
    Liu, Bingquan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (07) : 1631 - 1643
  • [49] Calibration for Parameter Estimation of Signals with Complex Noise via Nonstationarity Measure
    Zhou, Zhiming
    Zhou, Zhengyun
    Wu, Liang
    COMPLEXITY, 2021, 2021
  • [50] Recursive parameter identification of Hammerstein-Wiener systems with measurement noise
    Yu, Feng
    Mao, Zhizhong
    Jia, Mingxing
    Yuan, Ping
    SIGNAL PROCESSING, 2014, 105 : 137 - 147