General Federated Class-Incremental Learning With Lightweight Generative Replay

被引:1
|
作者
Chen, Yuanlu [1 ]
Tan, Alysa Ziying [2 ]
Feng, Siwei [1 ]
Yu, Han [2 ]
Deng, Tao [1 ]
Zhao, Libang [1 ]
Wu, Feng [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215000, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 20期
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Task analysis; Data models; Generators; Training; Servers; Federated learning; Data privacy; Catastrophic forgetting; class-specific domain distribution; data heterogeneity; federated class-incremental learning; replay free;
D O I
10.1109/JIOT.2024.3434600
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated class-incremental learning (FCIL) aims to allow federated learning (FL) systems to consistently learn new tasks with classes that change dynamically, without forgetting knowledge from previous classes. In FCIL scenarios, both heterogeneity in both label and data distribution across clients and catastrophic forgetting caused by continual emergence of new classes can significantly affect the performance of a FL system. Existing FCIL methods assume only changes in class distribution over time for each single client while ignoring class-specific domain distribution. Furthermore, these methods often rely on storing old class exemplars to mitigate catastrophic forgetting, potentially raising privacy concerns and computational burdens. In this article, we propose a FCIL framework called generative federated class-incremental learning (GenFCIL) that effectively addresses the aforementioned challenges. First, we introduce a lightweight generator that promotes knowledge sharing among clients and preserves the accumulated knowledge from all clients. By collecting classes and their associated data from each client, the generator effectively tackles data heterogeneity, facilitating information transfer across clients, and mitigating catastrophic forgetting in a replay-free manner. Importantly, the lightweight nature of the generator ensures that it does not impose excessive memory and computation requirements. Second, to tackle challenges from shifts in both class distribution and class-specific domain distribution in general FCIL scenarios, which may exacerbate catastrophic forgetting, we incorporate and update multiple logit scores from clients focusing on their old and new overlapping classes to incorporate more intraclass information. Experimental results show that GenFCIL effectively alleviates the impact of catastrophic forgetting and heterogeneity.
引用
收藏
页码:33927 / 33939
页数:13
相关论文
共 50 条
  • [31] A Class-Incremental Learning Method for PCB Defect Detection
    Ge, Quanbo
    Wu, Ruilin
    Wu, Yupei
    Liu, Huaping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [32] Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks
    Zhou, Da-Wei
    Ye, Han-Jia
    Ma, Liang
    Xie, Di
    Pu, Shiliang
    Zhan, De-Chuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (11) : 12816 - 12831
  • [33] Self-Training for Class-Incremental Semantic Segmentation
    Yu, Lu
    Liu, Xialei
    van de Weijer, Joost
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 9116 - 9127
  • [34] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    NEURAL NETWORKS, 2024, 169 : 307 - 324
  • [35] Learnable Distribution Calibration for Few-Shot Class-Incremental Learning
    Liu, Binghao
    Yang, Boyu
    Xie, Lingxi
    Wang, Ren
    Tian, Qi
    Ye, Qixiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12699 - 12706
  • [36] Model Attention Expansion for Few-Shot Class-Incremental Learning
    Wang, Xuan
    Ji, Zhong
    Yu, Yunlong
    Pang, Yanwei
    Han, Jungong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4419 - 4431
  • [37] Memorizing Complementation Network for Few-Shot Class-Incremental Learning
    Ji, Zhong
    Hou, Zhishen
    Liu, Xiyao
    Pang, Yanwei
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 937 - 948
  • [38] Mixup-Inspired Video Class-Incremental Learning
    Long, Jinqiang
    Gao, Yizhao
    Lu, Zhiwu
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1181 - 1186
  • [39] TORR: A Lightweight Blockchain for Decentralized Federated Learning
    Ma, Xuyang
    Xu, Du
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (01) : 1028 - 1040
  • [40] A Few-Shot Class-Incremental Learning Method for Network Intrusion Detection
    Du, Lei
    Gu, Zhaoquan
    Wang, Ye
    Wang, Le
    Jia, Yan
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2389 - 2401