Aluminum oxide, cobalt aluminum oxide, and aluminum-doped zinc oxide nanoparticles as an effective antimicrobial agent against pathogens

被引:1
作者
Omeiri, Mohamad [1 ]
El Hadidi, Esraa [2 ]
Awad, Ramadan [3 ,4 ]
Al Boukhari, Jamalat [3 ]
Yusef, Hoda [5 ]
机构
[1] Univ Balamand, Fac Arts & Sci, Dept Biol, Beirut, Lebanon
[2] Beirut Arab Univ, Fac Sci, Dept Biol Sci, Beirut, Lebanon
[3] Beirut Arab Univ, Fac Sci, Dept Phys, Beirut, Lebanon
[4] Alexandria Univ, Fac Sci, Dept Phys, Alexandria, Egypt
[5] Alexandria Univ, Fac Sci, Dept Bot & Microbiol, Alexandria, Egypt
关键词
Aluminum oxide; Cobalt aluminum oxide; Aluminum doped zinc oxide; Nanoparticles; Antimicrobial activity; Time-kill assay; ANTIBACTERIAL ACTIVITY; SILVER NANOPARTICLES; GREEN SYNTHESIS; INFECTIONS; STATE;
D O I
10.1016/j.heliyon.2024.e31462
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since the clock of antimicrobial resistance was set, modern medicine has shed light on a new cornerstone in technology to overcome the worldwide dread of the post-antimicrobial era. Research organizations are exploring the use of nanotechnology to modify metallic crystals from macro to nanoscale size, demonstrating significant interest in the field of antimicrobials. Herein, the antimicrobial activities of aluminum oxide (Al2O3), cobalt aluminum oxide (CoAl2O4), and aluminum doped zinc oxide (Zn0.9Al0.1O) nanoparticles were examined against some nosocomial pathogens. The study confirmed the formation and characterization of Al2O3, CoAl2O4, and Zn0.9Al0.1O nanoparticles using various techniques, revealing the generation of pure nanoscale nanoparticles. With inhibition zones ranging from 9 to 14 mm and minimum inhibitory concentrations varying from 4 mg/mL to 16 mg/mL, the produced nanoparticles showed strong antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Meanwhile, the bactericidal concentrations ranged from 8 mg/mL to 40 mg/mL. In culture, Zn0.9Al0.1O NPs demonstrated a unique ability to inhibit the development of nosocomial infections with high bactericidal activity (8 mg/mL). Transmission electron microscope images revealed changes in cell shape, bacterial cell wall morphology, cytoplasmic membrane, and protoplasm due to the introduction of tested nanoparticles. These results pave the way for the use of these easily bacterial wall-piercing nanoparticles in combination with potent antibiotics to overcome the majority of bacterial strains' resistance.
引用
收藏
页数:14
相关论文
共 52 条
[1]  
Abaide ER, 2015, MATER RES-IBERO-AM J, V18, P1062
[2]   Effects of aluminum (Al) incorporation on structural, optical and thermal properties of ZnO nanoparticles [J].
Ahammed, Nashiruddin ;
Hassan, Md Samim ;
Hassan, Mehedi .
MATERIALS SCIENCE-POLAND, 2018, 36 (03) :419-426
[3]   Zinc oxide nanoparticle: An effective antibacterial agent against pathogenic bacterial isolates [J].
Ahmad, Irfan ;
Alshahrani, Mohammad Y. ;
Wahab, Shadma ;
Al-Harbi, Alhanouf I. ;
Nisar, Nazima ;
Alraey, Yasser ;
Alqahtani, Abdulaziz ;
Mir, Mushtaq Ahmad ;
Irfan, Safia ;
Saeed, Mohd .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (05)
[4]   Assessment of disinfectant efficacy in reducing microbial growth [J].
Alajlan, Abdullah A. ;
Mukhtar, Lenah E. ;
Almussallam, Adnan S. ;
Alnuqaydan, Abdullah M. ;
Albakiri, Nasser S. ;
Almutari, Turki F. ;
Bin Shehail, Khalid M. ;
Aldawsari, Fahad S. ;
Alajel, Sulaiman M. .
PLOS ONE, 2022, 17 (06)
[5]  
Alkahlout A., 2014, Journal of Materials, DOI 10.1155/2014/235638
[6]   Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility [J].
Ansari, S. M. ;
Bhor, R. D. ;
Pai, K. R. ;
Sen, D. ;
Mazumder, S. ;
Ghosh, Kartik ;
Kolekar, Y. D. ;
Ramana, C. V. .
APPLIED SURFACE SCIENCE, 2017, 414 :171-187
[7]   Methods for in vitro evaluating antimicrobial activity: A review [J].
Balouiri, Mounyr ;
Sadiki, Moulay ;
Koraichi Ibnsouda, Saad .
JOURNAL OF PHARMACEUTICAL ANALYSIS, 2016, 6 (02) :71-79
[8]  
Barry A.L., 1999, M26-A Methods for Determining Bactericidal Activity of Antimicrobial Agents
[9]  
Approved Guideline This Document Provides Procedures for Determining the Lethal Activity of Antimicrobial Agents, V19
[10]   Detection of High-Level Rifaximin Resistance in Enteric Bacteria by Agar Screen [J].
Baumert, Philipp M. P. ;
Camp, Johannes ;
Goelz, Hannah ;
Vavra, Martina ;
Schuster, Sabine ;
Kern, Winfried V. ;
Mischnik, Alexander .
MICROBIAL DRUG RESISTANCE, 2020, 26 (06) :545-549