Emotion recognition using hierarchical spatial-temporal learning transformer from regional to global brain

被引:4
|
作者
Cheng, Cheng [1 ]
Liu, Wenzhe [2 ]
Feng, Lin [1 ,3 ]
Jia, Ziyu [4 ]
机构
[1] Dalian Univ Technol, Dept Comp Sci & Technol, Dalian, Peoples R China
[2] Huzhou Univ, Sch Informat Engn, Huzhou, Peoples R China
[3] Dalian Minzu Univ, Sch Informat & Commun Engn, Dlian, Peoples R China
[4] Univ Chinese Acad Sci, Chinese Acad Sci, Brainnetome Ctr, Inst Automat, Beijing, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Emotion recognition; Electroencephalogram (EEG); Transformer; Spatiotemporal features; EEG; FUSION;
D O I
10.1016/j.neunet.2024.106624
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion recognition is an essential but challenging task in human-computer interaction systems due to the distinctive spatial structures and dynamic temporal dependencies associated with each emotion. However, current approaches fail to accurately capture the intricate effects of electroencephalogram (EEG) signals across different brain regions on emotion recognition. Therefore, this paper designs a transformer-based method, denoted by R2G-STLT, which relies on a spatial-temporal transformer encoder with regional to global hierarchical learning that learns the representative spatiotemporal features from the electrode level to the brain-region level. The regional spatial-temporal transformer (RST-Trans) encoder is designed to obtain spatial information and context dependence at the electrode level aiming to learn the regional spatiotemporal features. Then, the global spatial-temporal transformer (GST-Trans) encoder is utilized to extract reliable global spatiotemporal features, reflecting the impact of various brain regions on emotion recognition tasks. Moreover, the multi-head attention mechanism is placed into the GST-Trans encoder to empower it to capture the longrange spatial-temporal information among the brain regions. Finally, subject-independent experiments are conducted on each frequency band of the DEAP, SEED, and SEED-IV datasets to assess the performance of the proposed model. Results indicate that the R2G-STLT model surpasses several state-of-the-art approaches.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Emotion recognition using spatial-temporal EEG features through convolutional graph attention network
    Li, Zhongjie
    Zhang, Gaoyan
    Wang, Longbiao
    Wei, Jianguo
    Dang, Jianwu
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [12] STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition
    Li, Jingcong
    Pan, Weijian
    Huang, Haiyun
    Pan, Jiahui
    Wang, Fei
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [13] Multimodal Fusion of Spatial-Temporal Features for Emotion Recognition in the Wild
    Wang, Zuchen
    Fang, Yuchun
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 205 - 214
  • [14] Leveraging spatial-temporal convolutional features for EEG-based emotion recognition
    An, Yi
    Xu, Ning
    Qu, Zhen
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69
  • [15] A spatial and temporal transformer-based EEG emotion recognition in VR environment
    Li, Ming
    Yu, Peng
    Shen, Yang
    FRONTIERS IN HUMAN NEUROSCIENCE, 2025, 19
  • [16] Transformers for EEG-Based Emotion Recognition: A Hierarchical Spatial Information Learning Model
    Wang, Zhe
    Wang, Yongxiong
    Hu, Chuanfei
    Yin, Zhong
    Song, Yu
    IEEE SENSORS JOURNAL, 2022, 22 (05) : 4359 - 4368
  • [17] Emotion Recognition Using Hierarchical Spatiotemporal Electroencephalogram Information from Local to Global Brain Regions
    Jeong, Dong-Ki
    Kim, Hyoung-Gook
    Kim, Jin-Young
    BIOENGINEERING-BASEL, 2023, 10 (09):
  • [18] Self-supervised representation learning using multimodal Transformer for emotion recognition
    Goetz, Theresa
    Arora, Pulkit
    Erick, F. X.
    Holzer, Nina
    Sawant, Shrutika
    PROCEEDINGS OF THE 8TH INTERNATIONAL WORKSHOP ON SENSOR-BASED ACTIVITY RECOGNITION AND ARTIFICIAL INTELLIGENCE, IWOAR 2023, 2023,
  • [19] Learning a spatial-temporal texture transformer network for video inpainting
    Ma, Pengsen
    Xue, Tao
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [20] Spatial-Temporal Feature Fusion Neural Network for EEG-Based Emotion Recognition
    Wang, Zhe
    Wang, Yongxiong
    Zhang, Jiapeng
    Hu, Chuanfei
    Yin, Zhong
    Song, Yu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71