Emotion recognition using hierarchical spatial-temporal learning transformer from regional to global brain

被引:14
作者
Cheng, Cheng [1 ]
Liu, Wenzhe [2 ]
Feng, Lin [1 ,3 ]
Jia, Ziyu [4 ]
机构
[1] Dalian Univ Technol, Dept Comp Sci & Technol, Dalian, Peoples R China
[2] Huzhou Univ, Sch Informat Engn, Huzhou, Peoples R China
[3] Dalian Minzu Univ, Sch Informat & Commun Engn, Dlian, Peoples R China
[4] Univ Chinese Acad Sci, Chinese Acad Sci, Brainnetome Ctr, Inst Automat, Beijing, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Emotion recognition; Electroencephalogram (EEG); Transformer; Spatiotemporal features; EEG; FEATURES; NETWORK; FUSION;
D O I
10.1016/j.neunet.2024.106624
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion recognition is an essential but challenging task in human-computer interaction systems due to the distinctive spatial structures and dynamic temporal dependencies associated with each emotion. However, current approaches fail to accurately capture the intricate effects of electroencephalogram (EEG) signals across different brain regions on emotion recognition. Therefore, this paper designs a transformer-based method, denoted by R2G-STLT, which relies on a spatial-temporal transformer encoder with regional to global hierarchical learning that learns the representative spatiotemporal features from the electrode level to the brain-region level. The regional spatial-temporal transformer (RST-Trans) encoder is designed to obtain spatial information and context dependence at the electrode level aiming to learn the regional spatiotemporal features. Then, the global spatial-temporal transformer (GST-Trans) encoder is utilized to extract reliable global spatiotemporal features, reflecting the impact of various brain regions on emotion recognition tasks. Moreover, the multi-head attention mechanism is placed into the GST-Trans encoder to empower it to capture the longrange spatial-temporal information among the brain regions. Finally, subject-independent experiments are conducted on each frequency band of the DEAP, SEED, and SEED-IV datasets to assess the performance of the proposed model. Results indicate that the R2G-STLT model surpasses several state-of-the-art approaches.
引用
收藏
页数:12
相关论文
共 70 条
[31]   Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network [J].
Li, Jingcong ;
Li, Shuqi ;
Pan, Jiahui ;
Wang, Fei .
FRONTIERS IN NEUROSCIENCE, 2021, 15
[32]   Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning [J].
Li, Jinyu ;
Hua, Haoqiang ;
Xu, Zhihui ;
Shu, Lin ;
Xu, Xiangmin ;
Kuang, Feng ;
Wu, Shibin .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
[33]   EEG Based Emotion Recognition by Combining Functional Connectivity Network and Local Activations [J].
Li, Peiyang ;
Liu, Huan ;
Si, Yajing ;
Li, Cunbo ;
Li, Fali ;
Zhu, Xuyang ;
Huang, Xiaoye ;
Zen, Ying ;
Yao, Dezhong ;
Zhang, Yangsong ;
Xu, Peng .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (10) :2869-2881
[34]   STSNet: a novel spatio-temporal-spectral network for subject-independent EEG-based emotion recognition [J].
Li, Rui ;
Ren, Chao ;
Zhang, Sipo ;
Yang, Yikun ;
Zhao, Qiqi ;
Hou, Kechen ;
Yuan, Wenjie ;
Zhang, Xiaowei ;
Hu, Bin .
HEALTH INFORMATION SCIENCE AND SYSTEMS, 2023, 11 (01)
[35]   A novel transferability attention neural network model for EEG emotion recognition [J].
Li, Yang ;
Fu, Boxun ;
Li, Fu ;
Shi, Guangming ;
Zheng, Wenming .
NEUROCOMPUTING, 2021, 447 :92-101
[36]   From Regional to Global Brain: A Novel Hierarchical Spatial-Temporal Neural Network Model for EEG Emotion Recognition [J].
Li, Yang ;
Zheng, Wenming ;
Wang, Lei ;
Zong, Yuan ;
Cui, Zhen .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (02) :568-578
[37]   EEGFuseNet: Hybrid Unsupervised Deep Feature Characterization and Fusion for High-Dimensional EEG With an Application to Emotion Recognition [J].
Liang, Zhen ;
Zhou, Rushuang ;
Zhang, Li ;
Li, Linling ;
Huang, Gan ;
Zhang, Zhiguo ;
Ishii, Shin .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 :1913-1925
[38]   The brain basis of emotion: A meta-analytic review [J].
Lindquist, Kristen A. ;
Wager, Tor D. ;
Kober, Hedy ;
Bliss-Moreau, Eliza ;
Barrett, Lisa Feldman .
BEHAVIORAL AND BRAIN SCIENCES, 2012, 35 (03) :121-143
[39]   The EEG microstate representation of discrete emotions [J].
Liu, Jin ;
Hu, Xin ;
Shen, Xinke ;
Lv, Zhao ;
Song, Sen ;
Zhang, Dan .
INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2023, 186 :33-41
[40]   Computation and Parameter Efficient Multi-Modal Fusion Transformer for Cued Speech Recognition [J].
Liu, Lei ;
Liu, Li ;
Li, Haizhou .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 :1559-1572