Self-learning activation functions to increase accuracy of privacy-preserving Convolutional Neural Networks with homomorphic encryption

被引:0
|
作者
Pulido-Gaytan, Bernardo [1 ]
Tchernykh, Andrei [1 ,2 ]
机构
[1] CICESE Res Ctr, Comp Sci Dept, Ensenada, BC, Mexico
[2] RAS, Ivannikov Inst Syst Programming, Moscow, Russia
来源
PLOS ONE | 2024年 / 19卷 / 07期
关键词
ATTACK;
D O I
10.1371/journal.pone.0306420
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The widespread adoption of cloud computing necessitates privacy-preserving techniques that allow information to be processed without disclosure. This paper proposes a method to increase the accuracy and performance of privacy-preserving Convolutional Neural Networks with Homomorphic Encryption (CNN-HE) by Self-Learning Activation Functions (SLAF). SLAFs are polynomials with trainable coefficients updated during training, together with synaptic weights, for each polynomial independently to learn task-specific and CNN-specific features. We theoretically prove its feasibility to approximate any continuous activation function to the desired error as a function of the SLAF degree. Two CNN-HE models are proposed: CNN-HE-SLAF and CNN-HE-SLAF-R. In the first model, all activation functions are replaced by SLAFs, and CNN is trained to find weights and coefficients. In the second one, CNN is trained with the original activation, then weights are fixed, activation is substituted by SLAF, and CNN is shortly re-trained to adapt SLAF coefficients. We show that such self-learning can achieve the same accuracy 99.38% as a non-polynomial ReLU over non-homomorphic CNNs and lead to an increase in accuracy (99.21%) and higher performance (6.26 times faster) than the state-of-the-art CNN-HE CryptoNets on the MNIST optical character recognition benchmark dataset.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Privacy-Preserving Convolutional Neural Networks Using Homomorphic Encryption
    Wingarz, Tatjana
    Gomez-Barrero, Marta
    Busch, Christoph
    Fischer, Mathias
    2022 INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS (IWBF), 2022,
  • [2] Privacy-preserving neural networks with Homomorphic encryption: Challenges and opportunities
    Pulido-Gaytan, Bernardo
    Tchernykh, Andrei
    Cortes-Mendoza, Jorge M.
    Babenko, Mikhail
    Radchenko, Gleb
    Avetisyan, Arutyun
    Drozdov, Alexander Yu
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2021, 14 (03) : 1666 - 1691
  • [3] Privacy-preserving neural networks with Homomorphic encryption: Challenges and opportunities
    Bernardo Pulido-Gaytan
    Andrei Tchernykh
    Jorge M. Cortés-Mendoza
    Mikhail Babenko
    Gleb Radchenko
    Arutyun Avetisyan
    Alexander Yu Drozdov
    Peer-to-Peer Networking and Applications, 2021, 14 : 1666 - 1691
  • [4] A Homomorphic Encryption Framework for Privacy-Preserving Spiking Neural Networks
    Nikfam, Farzad
    Casaburi, Raffaele
    Marchisio, Alberto
    Martina, Maurizio
    Shafique, Muhammad
    INFORMATION, 2023, 14 (10)
  • [5] Enhancing privacy-preserving machine learning with self-learnable activation functions in fully homomorphic encryption
    Xiong, Jichao
    Chen, Jiageng
    Lin, Junyu
    Jiao, Dian
    Liu, Hui
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2024, 86
  • [6] Privacy-Preserving Collective Learning With Homomorphic Encryption
    Paul, Jestine
    Annamalai, Meenatchi Sundaram Muthu Selva
    Ming, William
    Al Badawi, Ahmad
    Veeravalli, Bharadwaj
    Aung, Khin Mi Mi
    IEEE ACCESS, 2021, 9 : 132084 - 132096
  • [7] CryptoRNN - Privacy-Preserving Recurrent Neural Networks Using Homomorphic Encryption
    Bakshi, Maya
    Last, Mark
    CYBER SECURITY CRYPTOGRAPHY AND MACHINE LEARNING (CSCML 2020), 2020, 12161 : 245 - 253
  • [8] Privacy-Preserving All Convolutional Net Based on Homomorphic Encryption
    Liu, Wenchao
    Pan, Feng
    Wang, Xu An
    Cao, Yunfei
    Tang, Dianhua
    ADVANCES IN NETWORK-BASED INFORMATION SYSTEMS, NBIS-2018, 2019, 22 : 752 - 762
  • [9] Privacy-Preserving Swarm Learning Based on Homomorphic Encryption
    Chen, Lijie
    Fu, Shaojing
    Lin, Liu
    Luo, Yuchuan
    Zhao, Wentao
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 509 - 523
  • [10] On Fully Homomorphic Encryption for Privacy-Preserving Deep Learning
    Hernandez Marcano, Nestor J.
    Moller, Mads
    Hansen, Soren
    Jacobsen, Rune Hylsberg
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,