Functional Properties, Rheological Characteristics, Simulated Digestion, and Fermentation by Human Fecal Microbiota of Polysaccharide from Morchella importuna

被引:1
|
作者
Wang, Shurong [1 ]
Li, Dongjie [1 ]
Li, Guangle [1 ]
Duan, Naixin [1 ]
He, Chang [1 ]
Meng, Junlong [1 ,2 ]
Cheng, Yanfen [1 ]
Geng, Xueran [1 ]
Hou, Ludan [1 ]
Chang, Mingchang [2 ]
Xu, Lijing [1 ]
机构
[1] Shanxi Agr Univ, Coll Food Sci & Engn, Taigu 030801, Peoples R China
[2] Shanxi Engn Res Ctr Edible Fungi, Taigu 030801, Peoples R China
关键词
Morchella importuna polysaccharide; processing properties; simulated fermentation; gut microbiota; hypoglycemic; WATER-SOLUBLE POLYSACCHARIDES; IN-VITRO FERMENTATION; ANTIOXIDANT PROPERTIES; STRUCTURAL-CHARACTERIZATION; GUM; IMPACT;
D O I
10.3390/foods13132148
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Morchella importuna polysaccharide (MIP) has been proven to have obvious hypoglycemic effects on mice with type 2 diabetes (T2DM). This study looked at the functional and rheological characteristics of MIP, and investigated the effects of MIP on the human fecal microbiota through in vitro fermentation experiments. The outcomes demonstrate the excellent oil-holding capacity, emulsifying, foaming, and rheological characteristics of MIP. After salivary gastrointestinal digestion, the Mw of MIP decreased from 398.2 kDa and 21.5 kDa to 21.9 kDa and 11.7 kDa. By 16S rRNA sequencing of bacteria fermented in vitro, it was found that MIP did not improve the richness and diversity of intestinal microorganisms, but it may exert an anti-T2DM function by significantly increasing the relative abundance of Firmicutes and promoting Ruminococcaceae_UCG_014, Bacteroides, and Blautia proliferation. Escherichia-Shigella could also be inhibited to improve the intestinal microenvironment. In addition, the fermentation of MIP increased the total short-chain fatty acid (SCFA) concentration from 3.23 mmol/L to 39.12 mmol/L, and the propionic acid content increased significantly. In summary, MIP has excellent processing performance and is expected to exert potential anti-T2DM activity through the human intestinal microbiota, which has broad market prospects.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Prebiotic properties of different polysaccharide fractions from Artemisia sphaerocephala Krasch seeds evaluated by simulated digestion and in vitro fermentation by human fecal microbiota
    Li, Junjun
    Pang, Bing
    Yan, Ximei
    Shang, Xiaoya
    Hu, Xinzhong
    Shi, Junling
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 162 : 414 - 424
  • [2] In Vitro Digestion and Fermentation by Human Fecal Microbiota of Polysaccharides from Flaxseed
    Zhou, Xin
    Zhang, Zhao
    Huang, Fenghong
    Yang, Chen
    Huang, Qingde
    MOLECULES, 2020, 25 (19):
  • [3] Effects of in vitro simulated digestion and fecal fermentation of polysaccharides from straw mushroom (Volvariella volvacea) on its physicochemical properties and human gut microbiota
    Hu, Wei
    Di, Qing
    Liang, Tao
    Zhou, Na
    Chen, Hongxia
    Zeng, Zhihong
    Luo, Yang
    Shaker, Majid
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 239
  • [4] Characteristics of exopolysaccharides from Paecilomyces hepiali and their simulated digestion and fermentation in vitro by human intestinal microbiota
    Wu, Zhongwei
    Zhang, Rongxian
    Wang, Jie
    Li, Tenglong
    Zhang, Guang
    Zhang, Chaohui
    Ye, Hong
    Zeng, Xiaoxiong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 266
  • [5] In vitro digestion and fermentation by human fecal microbiota of polysaccharides from Clitocybe squamulose
    Guo, Dongdong
    Lei, Jiayu
    He, Chang
    Peng, Zhijie
    Liu, Rongzhu
    Pan, Xu
    Meng, Junlong
    Feng, Cuiping
    Xu, Lijing
    Cheng, Yanfen
    Chang, Mingchang
    Geng, Xueran
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 208 : 343 - 355
  • [6] In vitro simulated digestion and fermentation characteristics of polysaccharide from oyster (Crassostrea gigas), and its effects on the gut microbiota
    Ma, Yuyang
    Jiang, Suisui
    Zeng, Mingyong
    FOOD RESEARCH INTERNATIONAL, 2021, 149
  • [7] Simulated digestion and in vitro fermentation of a polysaccharide from lotus (Nelumbo nucifera Gaertn.) root residue by the human gut microbiota
    Guan, Xueting
    Feng, Yujing
    Jiang, Yunyao
    Hu, Yeye
    Zhang, Ji
    Li, Zhengpeng
    Song, Chao
    Li, Fu
    Hou, Jincai
    Shen, Ting
    Hu, Weicheng
    FOOD RESEARCH INTERNATIONAL, 2022, 155
  • [8] Evaluation of biological activity and prebiotic properties of proanthocyanidins with different degrees of polymerization through simulated digestion and in vitro fermentation by human fecal microbiota
    Chen, Xiaoyi
    Liu, Shuai
    Song, Hong
    Yuan, Chunlong
    Li, Junjun
    FOOD CHEMISTRY, 2024, 447
  • [9] In vitro simulated digestion and fecal fermentation of polysaccharides from loquat leaves: Dynamic changes in physicochemical properties and impacts on human gut microbiota
    Wu, Ding-Tao
    Fu, Yuan
    Guo, Huan
    Yuan, Qin
    Nie, Xi-Rui
    Wang, Sheng-Peng
    Gan, Ren-You
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 168 : 733 - 742
  • [10] In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from Gracilaria rubra
    Di, Tong
    Chen, Guijie
    Sun, Yi
    Ou, Shiyi
    Zeng, Xiaoxiong
    Ye, Hong
    JOURNAL OF FUNCTIONAL FOODS, 2018, 40 : 18 - 27