On Low-Velocity Impact Response and Compression after Impact of Hybrid Woven Composite Laminates

被引:0
|
作者
Li, Yumin [1 ]
Jin, Yongxing [1 ]
Chang, Xueting [2 ]
Shang, Yan [3 ]
Cai, Deng'an [3 ]
机构
[1] Shanghai Maritime Univ, Merchant Marine Coll, Shanghai 201306, Peoples R China
[2] Shanghai Maritime Univ, Coll Ocean Sci & Engn, Shanghai 201306, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Aerosp Struct, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
hybrid woven composite laminates; low-velocity impact (LVI); compression after impact (CAI); mechanical response; failure modes; marine structures; DAMAGE;
D O I
10.3390/coatings14080986
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper aims to study the low-velocity impact (LVI) response and compression after impact (CAI) performance of carbon/aramid hybrid woven composite laminates employed in marine structures subjected to different energy impacts. The study includes a detailed analysis of the typical LVI responses of hybrid woven composite laminates subjected to the impact with three different energies, as well as a comparative analysis of cracks and internal delamination damage within impact craters. Additionally, the influence of different impact energies on the residual compressive strength of hybrid woven composite laminate is investigated through CAI tests and a comparative analysis of internal delamination damage is also conducted. The results indicate that as the impact energy increases, the impact load and CAI strength show a decreasing trend, while impact displacement and impact dent show an increasing trend. The low-velocity impact tests revealed a range of failure modes observed in the hybrid woven composite laminates. Depending on the specific combination of fiber materials and their orientations, the laminates exhibited different failure mechanisms. Buckling failures were observed in the uppermost composite layers of laminates with intermediate modulus systems. In contrast, laminates with higher modulus systems showed early damage in the form of delamination within the top surface layers.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Low-velocity impact and compression after impact behaviour of nanoparticles modified polymer composites
    Elamvazhudi, B.
    Gopalakannan, S.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2024, 43 (23-24) : 1340 - 1355
  • [42] Low-velocity impact response of fiber-metal laminates - A theoretical approach
    Zhu, S.
    Chai, G. B.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2014, 228 (04) : 301 - 311
  • [43] The assessment of the compressive strength of fibre metal laminates after low-velocity impact
    Jakubczak, Patryk
    Podolak, Piotr
    Drozdziel-Jurkiewicz, Magda
    COMPOSITE STRUCTURES, 2023, 320
  • [44] Characterization of fracture modes in stitched and unstitched cross-ply laminates subjected to low-velocity impact and compression after impact loading
    Aymerich, F.
    Priolo, P.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2008, 35 (07) : 591 - 608
  • [45] Assessment of numerical modeling approaches for thin composite laminates under low-velocity impact
    Huang, Linhai
    Tao, Yin
    Sun, Jin
    Zhang, Diantang
    Zhao, Junhua
    THIN-WALLED STRUCTURES, 2023, 191
  • [46] Investigation of the effect of surface crack on low-velocity impact response in hybrid laminated composite plates
    Gunes, Aydin
    Sahin, Omer Sinan
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (06)
  • [47] Low-velocity impact resistance behaviors of bionic double-helicoidal composite laminates
    Deng, Yabin
    Jiang, Hongyong
    Ren, Yiru
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 248
  • [48] Experimental characterization of composite laminates under low-velocity multi-impact loading
    Amouzou, Adade Seyth Ezeckiel
    Sicot, Olivier
    Chettah, Ameur
    Aivazzadeh, Shahram
    JOURNAL OF COMPOSITE MATERIALS, 2019, 53 (17) : 2391 - 2405
  • [49] Experimental study of basalt fiber/steel hybrid laminates under low-velocity impact
    Pang, Yuezhao
    Yan, Xiaojun
    Yao, Houqi
    Qu, Jia
    Wu, Linzhi
    ENGINEERING FRACTURE MECHANICS, 2022, 259
  • [50] Analytical study of the low-velocity impact response of composite sandwich beams
    Ivanez, Ines
    Barbero, Enrique
    Sanchez-Saez, Sonia
    COMPOSITE STRUCTURES, 2014, 111 : 459 - 467